N9032B PXA X-Series Signal Analyzer, Multi-Touch

2 Hz to 8.4, 13.6, 26.5, 44, 50, or 55 GHz

Table of Contents

Data Sheet Definitions and Conditions	3
Frequency and Time Specifications	5
Amplitude Accuracy and Range Specifications	8
Frequency Response	10
Dynamic Range Specifications	19
Displayed Average Noise Level (DANL)	20
Residuals, Images, and Spurious Responses	24
Second-Harmonic Intercept (SHI)	25
Third-Order Intercept (TOI)	26
Phase Noise (SSB)	27
IQ Analyzer	29
10 MHz Analysis Bandwidth (Standard)	29
25 MHz Analysis Bandwidth (Option B25)	
40 MHz Analysis Bandwidth (Option B40)	31
255 MHz Analysis Bandwidth (Option B2X)	33
1 GHz Analysis Bandwidth (Option R10)	
1.5 GHz Analysis Bandwidth (Option R15)	
2 GHz Analysis Bandwidth (Option R20)	42
Real-time Spectrum Analyzer (RTSA)	45
General Specifications	48
Inputs and Outputs	49
Regulatory Information	54
Additional Resources	56
Confidently Covered by Keysight Services	57

Data Sheet Definitions and Conditions

This data sheet provides performance information for Keysight N9032B Signal Analyzers.

Specifications describe the performance of parameters covered by the product warranty and apply to temperature ranges 0 to 55 °C, unless otherwise noted.

95th percentile values indicate the breadth of the population (approx. 2σ) of performance tolerances expected to be met in 95 percent of the cases with a 95 percent confidence, for any ambient temperature in the range of 20 to 30 °C. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.

Typical values (typ) describe additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level over the temperature range 20 to 30 °C. Typical performance does not include measurement uncertainty.

Nominal values (nom) indicate expected performance or describe product performance that is useful in the application of the product but are not covered by the product warranty.

The analyzer will meet its specifications when:

- It is within its calibration cycle.
- Under auto couple control, except that Auto Sweep Time Rules = Accy
- For signal frequencies < 10 MHz, DC coupling applied.
- Analyzer is used in environment that falls within allowed operating range; and has been in that environment at least 2 hours before being turned on.
- Analyzer has been turned on at least 30 minutes with AutoAlign set to Normal; or, if Auto Align is set to Off or Partial, alignments must have been run recently enough to prevent an Alert message. Note that factory default is with the AutoAlign set to Light, which (compared to Normal) allows wider temperature changes before causing Alignments to run automatically. The benefit is that Alignments interrupt less frequently. The user can change AutoAlign to Normal if desired, and this setting will persist after power cycle or PRESET. If the Alert condition is changed from "Time and Temperature" to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user. In practice, the impact of such choices is primarily on Absolute Amplitude Accuracy. If temperature changes are small, the impact of Light vs Normal is negligible. Also, the user may invoke Align All at any time, to get the best possible accuracy.
- The term "mixer level" is used as a condition for many specifications in this document. This term is a conceptual quantity that is defined as follows: Mixer Level (dBm) = RF Input Power Level (dBm) (Mechanical Attenuation) (dB) (Electronic Attenuation) (dB).
- The term "attenuation" is used for many specifications in this document; this refers to the Mechanical Attenuator, unless otherwise stated.

Common abbr	eviations
BW	bandwidth
FBP	full bypass path
FFT	fast Fourier transform
IQ	in-phase quadrature-phase (sample data)
IVL	Individual validated license (for export to restricted countries)
LNA	low-noise amplifier
LNP	low-noise path
LO	local oscillator
PA	pre-amplifier
MPB	microwave preselector bypass
RBW	resolution bandwidth (filter)
VBW	video bandwidth (filter)

Frequency and Time Specifications

Frequency option	Frequency range DC coupled			
508	2 Hz to 8.4 GHz			
513	2 Hz to 13.6 GHz			
526	2 Hz to 26.5 GHz			
544	2 Hz to 44 GHz			
550	2 Hz to 50 GHz			
555	2 Hz to 55 GHz			
Minimal frequency	DC coupled	AC coupled (option 508, 513 and 526)		
PA off, LNA off	2 Hz	10 MHz		
PA on	9 kHz	10 MHz		
LNA on	20 MHz	20 MHz		
Swept spectrum analysis (these bands are not applied	cable to wide-bandwidth IQ analysis)			
Swept frequency band	LO multiple (N)	Frequency range		
0	1	2 Hz to 3.6 GHz		
1	1	3.5 to 8.4 GHz		
2	2	8.3 to 13.6 GHz		
3	2	13.5 to 17.1 GHz		
4	4	17.0 to 26.5 GHz		
5	4	26.4 to 34.5 GHz		
6	8	34.4 to 55 GHz		
Frequency reference				
Accuracy (total)	+ [(Initial accuracy) + (aging rat	e x time since last adjustment) + (temperature stability)]		
Aging rate	± 3 x 10 ⁻⁸ / year			
Temperature stability	$\pm 4.5 \times 10^{-9}$ over full temperature range			
Achievable initial calibration accuracy	± 3.1 x 10 ⁻⁸	· •		
Example frequency reference accuracy		$= \pm (3 \times 10^{-8} + 4.5 \times 10^{-9} + 3.1 \times 10^{-8})$		
1 year after last adjustment	= ± 6.6 x 10− ⁸	= ± 6.6 x 10 ⁻⁸		
Residual FM				
Center frequency = 1 GHz, 10 Hz RBW, 10 Hz VBW	\leq (0.25 Hz x N) p-p in 20 ms no	ominal (N = LO multiple, see band table above)		
Frequency readout accuracy (start, stop, center, ma		, , , , , , , , , , , , , , , , , , ,		
± (marker frequency x frequency reference accuracy + 0 span/(sweep points-1)		x horizontal resolution) where horizontal resolution is		
Marker frequency counter				
Accuracy	± (marker frequency x frequenc	y reference accuracy + 0.100 Hz)		
Delta counter accuracy	± (delta frequency x frequency r			
Counter resolution	0.001 Hz			
Frequency span (FFT and swept mode)				
Range	0 Hz (zero span) 10 Hz to maxi	mum frequency of instrument		
Resolution	2 Hz	0 Hz (zero span), 10 Hz to maximum frequency of instrument		
Accuracy				
-	1 (0 1 % y on on a horizontal and	alution) where perizontal resolution is approximate a sister of		
Swept FFT		\pm (0.1 % x span + horizontal resolution) where horizontal resolution is span/(sweep points -1		
	± (U.1 % x span + norizontal res	solution) where horizontal resolution is span/(sweep points -1		
Sweep time and triggering		4 4 6000		
Range	Span = 0 Hz	1 µs to 6000 s		
-	Span ≥ 10 Hz	1 ms to 4000 s		
A	Span ≥ 10 Hz, swept	± 0.01% nominal		
Accuracy	Span ≥ 10 Hz, FFT	± 40% nominal		
	Span = 0 Hz	± 0.01% nominal		
	Span = 0 Hz or FFT	-150 to +500 ms		
Trigger Delay	Span ≥ 10 Hz, swept	0 to 500 ms		
	Resolution	0.1 µs		

Time gating					
Gate methods			Gated LO; Ga	ited video; Gated FFT	
Gate length range (except method = FFT)			1 µs to 5.0 s		
Gate delay range			0 to 100.0 s		
Gate delay jitter			33.3 ns p-p (n	om)	
Sweep trace) point range					
All spans			1 to 100,001		
Resolution bandwidth (RBW) filters (see also IQ Ar	nalysis section))			
Range (with –3 dB bandwidth, standard)			1 Hz to 3 MHz	z (10% steps), 4, 5, 6, 8, a	nd 10 MHz
Bandwidth accuracy (power)					
RBW range			Accuracy		
1 Hz to 100 kHz			± 0.5% (± 0.0	22 dB)	
110 kHz to 1.0 MHz (< 3.6 GHz CF)			± 1.0% (± 0.0	,	
1.1 to 2 MHz (< 3.6 GHz CF)			± 0.07 dB (no		
2.2 to 3 MHz (< 3.6 GHz CF)			0 to -0.2 dB (
4 to 10 MHz (< 3.6 GHz CF)			0 to -0.4 dB (,	
Bandwidth accuracy (-3 dB)					
RBW range			Accuracy		
1 Hz to 1.3 MHz			± 2% (nomina	al)	
1.5 MHz to 3 MHz				,	
(≤ 3.6 GHz center frequency)			±7% (nominal)		
(> 3.6 GHz center frequency)			$\pm 8\%$ (nominal)		
4 MHz to 10 MHz					
(≤ 3.6 GHz center frequency)			± 15% (nominal)		
(> 3.6 GHz center frequency)			± 20% (nomir	nal)	
Selectivity (-60 dB/-3 dB)			4.1: 1 (nomina	,	
EMI bandwidths (CISPR 16-1-1; requires N90EMEMC	B or N6141EM0)E)	200 Hz, 9 kHz	z, 120 kHz, 1 MHz	
EMI bandwidths (MIL-STD-461; requires N90EMEMCE	B or N6141EM0	E)	10 Hz, 100 Hz	z, 1 kHz, 10 kHz, 100 kHz,	1 MHz
Preselector bandwidth					
The preselector can have a significant passband ripple	e. To avoid ambi	guous results,	s, the -4dB ban	dwidth is characterized	
Center frequency			М	ean bandwidth (- 4 dB)	
		, 513 and 526		Option 544 and 550	Option 555
5 GHz	58 MHz			46 MHz	39 MHz
10 GHz	57 MHz			52 MHz	46 MHz
15 GHz	59 MHz			53 MHz	47 MHz
20 GHz	64 MHz			55 MHz	48 MHz
25 GHz	74 MHz			56 MHz	52 MHz
35 GHz	_			62 MHz	57 MHz
44 GHz	N/A			70 MHz	64 MHz
50 GHz				76 MHz	72 MHz
55 GHz				N/A	80 MHz
Video bandwidth (VBW) filters					
			o 3 MHz (10% steps), 4, 5,6, 8 MHz, and wide open (labeled 50 MHz)		
•		± 6%, nomin	nal		
Detector types					
Normal, peak, sample, negative peak, log power avera With N90EMEMCB or N6141EM0E	age, RMS averaç			average to above	

Triggers and Gating

s	Swept trigger	Gate source	Wide bandwidth IQ trigger	Supplemental information
Free Run Y	(Y	
External 1		Y	Y	
External 2		Y	Y	Jitter up to ~33 ns p-p (nominal)
External 3			Y	Jitter < 20 ps (nominal)
RF Burst	(Y		IF Path \leq 40 MHz only
Video (IF Mag)		· ·	Y	In 255 MHz IF Path only; at greater bandwidths, ADC trigger is simila
ADC			Y	Similar to Video, but operates digitally on mag[I,Q], prior to decimation, filtering, and corrections. Available for bandwidth > 255 MHz.
Line Y	(Y	Y	
Periodic	(Y	Y	Repetitive "frame" trigger, at precise interval, following an External o RF Burst trigger
TV ۲	(Y		
Triggers				
Video (independent of Dis and Reference Level)	splay Scaling	Specifications		Supplemental information
, Minimum settable level		-170 dBm		Useful range limited by noise
Maximum usable level				Highest allowed mixer level (the highest allowed mixer level depends on the IF Gain. It is nominally –10 dBm for Preamp Off and IF Gain = Low) + 2 dB (nominal)
Detector and sweep type	relationships			
				Supplemental information
Sweep Type = Swept				
Detector = Normal, Peak, Sample or Negative Peak			Triggers on the signal before detection, which is similar to the displayed signal	
Detector = Average				Triggers on the signal before detection, but with a single-pole filter added to give similar smoothing to that of the average detector
Sweep Type = FFT				Triggers on the signal envelope in a bandwidth wider than the FFT width
RF Burst		Specifications		Supplemental information
Level range		-40 to -10 dBm plus attenuation (nominal)		Noise will limit trigger level range at high frequencies, such as above 15 GHz
Level accuracy				
With positive slope trigger.	Trigger level with	negative slope is	nominally 1 to 4 dB lov	wer than positive slope.
Absolute		± 2 dB + Absolute Amplitude Accuracy (nominal)		
Relative		$\pm 2 \text{ dB} (\text{nominal})$		
		(,	1
Bandwidth (-10 dB) Most cases (set align product on the product of		inal)		
(including RF Burst Level T Start Freq < 300 MHz				
RF Burst Level Type = Absolute				
Sweep Type = Swept		16 MHz (nomin	aı)	
Sweep Type = FFT		> 00 MILL (I)	
	FFT Width > 25 MHz > 80 MHz (nominal)			
FFT Width 8 to 25 MI	Hz	30 MHz (nomin	,	
FFT Width < 8 MHz		16 MHz (nomin	al)	
Frequency Limitations			If the start or center frequency is too close to zero, LO feedthrough can degrade or prevent triggering. How close is too close depends or the bandwidth listed above.	
Amplitude Requirements				-65 dBm minimum video carrier power at the input mixer, nominal

Amplitude Accuracy and Range Specifications

Amplitude characteristics vary by user-selectable front-end path. Swept SA measurements are normally made with preselector on (in circuit). These settings impact amplitude accuracy and range.

Front e	end settings		
1a		Preselector	Default selection following power-on, boot-up, or PRESET. Settings provide best dynamic range and lowest internally-generated distortion. Suitable for harmonics, IMD, spurious in presence of large signals, etc. unless noise-limited.
1b	Standard path	Preselector, LNA on	Requires P08, P13, P26, P44, P4L, P50, P5L, P55, or P5N. Settings provide lower DANL, compared to 1a, while preserving very good dynamic range. Suitable for distortion measurements (harmonics, IMD, etc.) when a lower noise floor is needed.
1c		Preselector, PA on	Requires P08, P13, P26, P44, P4L, P50, P5L, P55, or P5N. Settings provide lower DANL, compared to 1b.
1d		Preselector, LNA on, PA on	Requires P08, P13, P26, P44, P4L, P50, P5L, P55, or P5N. Settings provide lowest possible DANL, compared to 1c. Best for finding low-level spurs, oscillations, etc. near the noise floor. Allows use of wider RBW setting to achieve equivalent noise floors, so can make spur searching faster.
2a	Lever a size weth	Preselector, LNP	Bypasses the preamplifier. Settings provide the lowest distortion and best dynamic range, yet with lower DANL at higher frequencies, when compared with 1a. Path not active below 3.6 GHz.
2b	Low-noise path (LNP)	Preselector, LNP, LNA on	Bypasses the preamplifier. Requires P08, P13, P26, P44, P4L, P50, P5L, P55, or P5N. Settings provide the lower DANL, compared to 2a, while preserving very good dynamic range. Path not active at below 3.6 GHz.
3a		MPB	Bypasses preselector. Settings provide very good EVM floor at mid-high input power region (using attenuation), including below 3.6 GHz. Good for wideband digitizer and FFT measurements. Recommend using path 4a if above 3.6 GHz.
3b	Microwave Preselector	LNA on	Bypasses preselector. Requires P08, P13, P26, P44, P4L, P50, P5L, P55, or P5N. Settings provide best EVM at low input power for below 3.6 GHz. Good for wideband digitizer and FFT measurements. Otherwise use path 4b if above 3.6 GHz.
3c	Bypass path (MPB)	PA on	Bypasses preselector. Requires P08, P13, P26, P44, P4L, P50, P5L, P55, or P5N. Good for wideband digitizer and FFT measurements. Settings allowed only for very low power levels since preselector is bypassed. Not generally recommended for digital demodulation.
3d		LNA on, PA on	Bypasses preselector. Requires P08, P13, P26, P44, P4L, P50, P5L, P55, or P5N. Good sensitivity for narrowband swept measurements only. Not generally recommended for digital demodulation.
4a		LNP, MPB	Bypasses both preamplifier and preselector. Settings provide best EVM floor for mid-high input power region (using attenuation) for above 3.6 GHz. Best for wideband digitizer and FFT measurements. Otherwise use path 3a if below 3.6 GHz.
4b	Full Bypass path (FBP)	LNP, MPB, LNA on	Bypasses both preamplifier and preselector. Requires P08, P13, P26, P44, P4L, P50, P5L, P55, or P5N. Settings provide best EVM floor for low input power region (using attenuation) for above 3.6 GHz. Best for wideband digitizer and FFT measurements. Otherwise use path 3b if below 3.6 GHz.

Amplitude range	
Measurement range	Displayed average noise level (DANL) to +30 dBm (for preamp Off) DANL to +24 dBm (for frequency opts \leq 526 with preamp On) DANL to +20 dBm (for frequency opts > 526 with preamp On)
Input mechanical attenuator range (2 Hz to 55 GHz)	0 to 70 dB in 2 dB steps
Electronic attenuator (option EA3)	
Frequency range	2 Hz to 3.6 GHz
Attenuation range	
Electronic attenuator range	0 to 24 dB, 1 dB steps
Full attenuation range (mechanical + electronic)	0 to 94 dB, 1 dB steps
Maximum safe input level (max applied to RF input connector)	
Average total power (with and without preamp)	+30 dBm (1 W)
Peak pulse power (< 10 μ s pulse width, < 1% duty cycle, and input attenuation \ge 30 dB)	+50 dBm (100 W)
DC volts	
DC coupled	± 0.2 Vdc
AC coupled (Option 508,513 or 526)	± 100 Vdc
Display range	
Log scale	0.1 to 1 dB/division in 0.1 dB steps 1 to 20 dB/division in 1 dB steps (10 display divisions)
Linear scale	10 divisions
Scale units	dBm, dBmV, dBµV, dBmA, dBµA, V, W, A

Frequency Response

1a. Standard path frequency response (swept, preselector on, LNA off, PA off)

10 dB input attenuation, relative to reference conditions (50 MHz), preselector centering applied above 3.6 GHz

Frequency	Full range	20 to 30° C	Typical, unless otherwise stated
2 Hz to 30 MHz	± 0.50 dB	± 0.40 dB	± 0.15 dB
> 30 MHz to 50 MHz	± 0.40 dB	± 0.35 dB	± 0.20 dB
> 50 MHz to 3.6 GHz	± 0.60 dB	± 0.35 dB	± 0.20 dB
> 3.6 to 5.2 GHz	± 3.50 dB	± 1.70 dB	± 1.00 dB
> 5.2 to 8.4 GHz	± 2.50 dB	± 1.50 dB	± 0.60 dB
> 8.4 to 13.6 GHz	± 2.00 dB	± 1.50 dB	± 0.60 dB
> 13.6 to 17.1 GHz	± 2.20 dB	± 1.50 dB	± 0.60 dB
> 17.1 to 22.0 GHz	± 2.30 dB	± 1.50 dB	± 0.60 dB
> 22.0 to 26.5 GHz	± 2.50 dB	± 2.00 dB	± 0.70 dB
> 26.5 to 34.5 GHz	± 3.50 dB	± 2.30 dB	± 1.00 dB
> 34.5 to 36.5 GHz	± 5.20 dB	± 2.50 dB	± 1.50 dB
> 36.5 to 55.0 GHz	± 5.20 dB	± 3.10 dB	± 1.50 dB

1b. Standard path, LNA on frequency response (swept, preselector on, LNA on, PA off) 0 dB input attenuation, relative to reference conditions (50 MHz), preselector centering applied above 3.6 GHz

Frequency	Full range	20 to 30° C	Typical, unless otherwise stated
30 MHz to 3.6 GHz	± 0.70 dB	± 0.50 dB	± 0.20 dB
> 3.6 to 5.2 GHz	± 3.50 dB	± 1.90 dB	± 1.10 dB
> 5.2 to 8.4 GHz	± 2.70 dB	± 1.70 dB	± 0.70 dB
> 8.4 to 13.6 GHz	± 2.30 dB	± 1.70 dB	± 0.70 dB
> 13.6 to 17.1 GHz	± 2.60 dB	± 1.70 dB	± 0.70 dB
> 17.1 to 22.0 GHz	± 2.80 dB	± 1.90 dB	± 0.70 dB
> 22.0 to 26.5 GHz	± 3.00 dB	± 2.30 dB	± 0.80 dB
> 26.5 to 34.5 GHz	± 3.70 dB	± 2.60 dB	± 1.20 dB
> 34.5 to 55.0 GHz	± 5.30 dB	± 3.20 dB	± 1.60 dB

Frequency	Full range	20 to 30° C	Typical, unless otherwise stated
9 kHz to 100 kHz			± 0.40 dB (nom)
> 100 kHz to 50 MHz	± 0.80 dB	± 0.68 dB	± 0.35 dB
> 50 MHz to 3.6 GHz	± 0.80 dB	± 0.60 dB	± 0.20 dB
> 3.6 to 5.2 GHz	± 3.50 dB	± 2.30 dB	± 1.20 dB
> 5.2 to 8.4 GHz	± 2.70 dB	± 2.00 dB	± 0.80 dB
> 8.4 to 13.6 GHz	± 2.50 dB	± 2.00 dB	± 0.80 dB
> 13.6 to 17.1 GHz	± 2.50 dB	± 2.00 dB	± 0.95 dB
> 17.1 to 22.0 GHz	± 2.90 dB	± 2.20 dB	± 0.95 dB
> 22.0 to 26.5 GHz	± 3.70 dB	± 2.70 dB	± 1.20 dB
> 26.5 to 34.5 GHz	± 4.50 dB	± 2.90 dB	± 1.30 dB
> 34.5 to 55.0 GHz	± 5.20 dB	± 3.40 dB	± 1.60 dB

• • • •	frequency response (low-noise path enabled, preselector on, LNA on, PA off) ative to reference conditions (50 MHz), preselector centering applied above 3.6 GHz
Frequency	Frequency response (nominal)
< 3.6 GHz	If tuning to <3.6 GHz, then actually using Standard Path with LNA ON
3.6 to 8.4 GHz	+ 0.80 dB

3.6 to 8.4 GHz	± 0.80 dB
> 8.4 to 17.1 GHz	± 0.70 dB
> 17.1 to 26.5 GHz	± 1.00 dB
> 26.5 to 34.5 GHz	± 1.00 dB
> 34.5 to 55.0 GHz	± 1.40 dB

1d. Standard path, LNA on, PA on frequency response (swept, preselector on, LNA on, PA on) 0 dB input attenuation, relative to reference conditions (50 MHz), preselector centering applied above 3.6 GHz

Frequency	Full range	20 to 30 °C	Typical, unless otherwise stated				
< 3.6 GHz	(if tuning < 3.6 GHz, then s	(if tuning < 3.6 GHz, then standard path with LNA on is used)					
3.6 to 5.2 GHz	± 3.50 dB	± 3.50 dB ± 2.10 dB ± 1.30 dB					
> 5.2 to 8.4 GHz	± 2.80 dB	± 1.80 dB	± 0.75 dB				
> 8.4 to 13.6 GHz	± 2.40 dB	± 1.80 dB	± 0.75 dB				
> 13.6 to 17.1 GHz	± 2.40 dB	± 1.80 dB	± 0.75 dB				
> 17.1 to 22.0 GHz	± 2.70 dB	± 2.10 dB	± 0.75 dB				
> 22.0 to 26.5 GHz	± 3.20 dB	± 2.50 dB	± 0.90 dB				
> 26.5 to 34.5 GHz	± 3.90 dB	± 2.80 dB	± 1.30 dB				
> 34.5 to 36.5 GHz	± 5.30 dB	± 3.40 dB	± 1.70 dB				
> 36.5 to 45.0 GHz	± 5.30 dB	± 3.40 dB	± 1.70 dB				
> 45.0 to 50.0 GHz	± 5.80 dB	± 3.40 dB	± 1.70 dB				
> 50.0 to 55.0 GHz	± 6.20 dB	± 3.40 dB	± 1.70 dB				

2a. Low-noise path (LNP) frequency response (low-noise path enabled, preselector on, LNA off, PA off) 10 dB input attenuation, relative to reference conditions (50 MHz), preselector centering applied above 3.6 GHz

Frequency	Full range	20 to 3 0°C	Typical, unless otherwise stated				
< 3.6 GHz	If tuning to <3.6 GHz, then	If tuning to <3.6 GHz, then actually using Standard Path					
3.6 to 5.2 GHz	± 3.50 dB ± 1.80 dB ± 1.00 dB						
> 5.2 to 8.4 GHz	± 2.50 dB	± 1.50 dB	± 0.75 dB				
> 8.4 to 13.6 GHz	± 2.00 dB	± 1.50 dB	± 0.75 dB				
> 13.6 to 17.1 GHz	± 2.00 dB	± 1.50 dB	± 0.75 dB				
> 17.1 to 22.0 GHz	± 2.50 dB	± 2.00 dB	± 0.90 dB				
> 22.0 to 26.5 GHz	± 3.00 dB	± 2.50 dB	± 1.05 dB				
> 26.5 to 34.5 GHz	± 3.60 dB	± 2.80 dB	± 1.10 dB				
> 34.5 to 36.5 GHz	± 5.30 dB	± 3.10 dB	± 1.40 dB				
> 36.5 to 45.0 GHz	± 4.40 dB	± 3.10 dB	± 1.40 dB				
> 45.0 to 55.0 GHz	± 5.30 dB	± 3.10 dB	± 1.40 dB				

3a. Microwave preselector bypass (MPB) path frequency response (MBP enabled, LNA off, PA off) 10 dB input attenuation, relative to reference conditions (50 MHz),

Frequency	Full range	20 to 30 °C	Typical, unless otherwise stated
3.6 to 8.4 GHz	± 1.40 dB	± 1.00 dB	± 0.50 dB
> 8.4 to 13.6 GHz	± 1.60 dB	± 1.10 dB	± 0.55 dB
> 13.6 to 17.1 GHz	± 1.80 dB	± 1.10 dB	± 0.55 dB
> 17.1 to 22.0 GHz	± 2.00 dB	± 1.40 dB	± 0.60 dB
> 22.0 to 26.5 GHz	± 2.20 dB	± 1.60 dB	± 0.70 dB
> 26.5 to 34.5 GHz	± 2.90 dB	± 1.80 dB	± 0.90 dB
> 34.5 to 36.5 GHz	± 5.50 dB	± 3.00 dB	± 1.50 dB
> 36.5 to 45.0 GHz	± 4.00 dB	± 3.00 dB	± 1.50 dB
> 45.0 to 55.0 GHz	± 5.50 dB	± 3.00 dB	± 1.50 dB

3b, 3c, 3d. Microwave preselector bypass (MPB) path frequency response (MBP path enabled, relative to 10 dB, excludes 0 dB setting)						
Frequency	3b. MPB, LNA on (0 dB input attenuation) (nominal)	3c. Std, PA on (0 dB input attenuation) (nominal)	3d. Std, LNA on, PA on (0 dB input attenuation) (nominal)			
3.6 GHz to 8.4 GHz	± 0.40 dB	± 0.30 dB	± 0.40 dB			
> 8.4 to 13.6 GHz	± 0.50 dB	± 0.40 dB	± 0.50dB			
> 13.6 to 17.1 GHz	± 0.50 dB	± 0.40 dB	± 0.50 dB			
> 17.1 to 26.5 GHz	± 0.50 dB	± 0.50 dB	± 0.60 dB			
> 26.5 to 34.5 GHz	± 0.60 dB	± 0.60 dB	± 0.70 dB			
> 34.5 to 55 GHz	± 1.10 dB	± 1.20 dB	± 1.10 dB			

4a, 4b. Full bypass (FBP) path frequency response (full bypass path enabled)					
Frequency	4a. FBP (10 dB input attenuation) (nominal)	4b. FBP, LNA on (0 dB input attenuation) (nominal			
3.6 to 8.4 GHz	± 0.40 dB	± 0.40 dB			
> 8.4 to 13.6 GHz	± 0.40 dB	± 0.50 dB			
> 13.6 to 17.1 GHz	± 0.40 dB	± 0.50 dB			
> 17.1 to 26.5 GHz	± 0.40 dB	± 0.50 dB			
> 26.5 to 34.5 GHz	± 0.50 dB	± 0.60 dB			
> 34.5 to 55 GHz	± 1.00 dB	± 1.00 dB			

Electronic attenuator (option EA3) frequency response							
Maximum error relative to reference conditions (50 MHz). Me	echanical attenuation set to de	efault/calibrated setting of 10 dB.					
Frequency	Full range	20 to 30 °C	Typical, unless stated otherwise				
2 Hz to 9 kHz	± 0.80 dB	± 0.60 dB	± 0.25 dB				
9 kHz to 50 MHz	± 0.80 dB	± 0.60 dB	± 0.25 dB				
50 MHz to 3.6 GHz	± 0.60 dB	± 0.40 dB	± 0.20 dB				

Note: Signal frequencies above 18 GHz are prone to additional response errors due to modes in the Type-N connector used. Only analyzers with frequency Option 526 that do not also have input connector Option C35 will have these modes. With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. The effect of these modes with this connector are included within these specifications.

Attenuator switching uncertainty (50 MHz reference frequency, relative to 10 dB reference setting, LNA off, PA off)

Attenuation	Full range	Typical
12 to 40 dB	± 0.14 dB	± 0.04 dB
2 to 8 dB, or > 40 dB	± 0.18 dB	± 0.06 dB
0 dB		± 0.05 dB (nominal)
Attenuation >2 dB at other	frequencies (nominal)	
2 Hz to 3.6 GHz	± 0.3 dB	
> 3.6 to 8.4 GHz	± 0.5 dB	
> 8.4 to 26.5 GHz	± 0.7 dB	
> 26.5 to 55 GHz	± 1.0 dB	

Total absolute amplitude accuracy (at 50 MHz)

At 50 MHz, 10 dB attenuation, RBW < = 1 MHz, input signal -10 to -50 dBm, all settings auto-coupled except Auto Swp Time = Accy, any Reference Level, any vertical Scale.

Path	Full range	20 to 30 °C	Typical	AutoAlign = Light, nominal
1a. Std	± 0.35 dB	± 0.30 dB	± 0.10 dB	± 0.17 dB
1b. Std (LNA on, preamp off)	± 0.40 dB	± 0.35 dB	± 0.15 dB	± 0.19 dB
1c. Std (LNA off, preamp on)	± 0.40 dB	± 0.35 dB	± 0.15 dB	± 0.17 dB
With electronic attenuator				
(at 50MHz, 0 to 24 dB attenuation, RI any vertical Scale)	BW < = 1 MHz, input signal	-7 to -25 dBm, all settin	gs auto-coupled exce	pt Auto Swp Time = Accy, any Reference Level,
· · ·	± 0.35 dB	± 0.30 dB	± 0.10 dB	± 0.17 dB

For absolute amplitude accuracy at any f	requency, use the following formulas:
At any frequency	± (Abs Amp at 50 MHz + Frequency Response)
Wide range of signal levels, resolution bandwidths, reference levels, attenuation = 10 dB, 10 Hz to 3.6 GHz	± 0.20 dB, 95 th percentile
	total of all amplitude measurement errors, and applies over the following subset of settings and conditions:
$1 \text{ Hz} \le \text{RBW} \le 1 \text{ MHz}$	
Input signal -10 to -50 dBm (details belo	w)
Input attenuation 10 dB	
Span < 5 MHz (nominal additional error f	or span ≥ 5 MHz is is 0.02 dB)
All settings auto-coupled except Swp Tin	ne Rules = Accuracy
Combinations of low signal level and wid	e RBW use VBW ≤ 30 kHz to reduce noise
When using FFT sweeps, the signal mus	t be at the center frequency.
This absolute amplitude accuracy specificat	ion includes the sum of the following individual specifications under the conditions listed above: Scale Fidelity,
Reference Level Accuracy, Display Scale S	witching Uncertainty, Resolution Bandwidth Switching Uncertainty, 50 MHz Amplitude Reference Accuracy, and
the accuracy with which the instrument aligr	is its internal gains to the 50 MHz Amplitude Reference. The only difference between signals within the range
above -50 dBm and those signals below that	at level is the scale fidelity. Our specifications and experience show no difference between signals above and
below this level. The only reason our Absolu	te Amplitude Uncertainty specification does not go below this level is that noise detracts from our ability to verify
the performance at all levels with acceptable	e test times and yields. So the performance is not warranted at lower levels, but we fully expect it to be the same.

Note 2: Absolute amplitude accuracy for a wide range of signal and measurement settings, covers the 95th percentile proportion with 95% confidence. Here are the details of what is covered and how the computation is made:

The wide range of conditions of RBW, signal level, VBW, reference level and display scale are described above.

There are 44 quasi-random combinations used, tested at a 50 MHz signal frequency.

We compute the 95th percentile proportion with 95% confidence for this set observed over a statistically significant number of instruments.

Also, the frequency response relative to the 50 MHz response is characterized by varying the signal across a large number of quasi-random verification frequencies that are chosen to not correspond with the frequency response adjustment frequencies.

We again compute the 95th percentile proportion with 95% confidence for this set observed over a statistically significant number of instruments. We also compute the 95th percentile accuracy of tracing the calibration of the 50 MHz absolute amplitude accuracy to a national standards organization.

We also compute the 95th percentile accuracy of tracing the calibration of the relative frequency response to a national standards organization We take the root-sum-square of these four independent Gaussian parameters

To that RSS we add the environmental effects of temperature variations across the 20 to 30°C range.

These computations and measurements are made with the mechanical attenuator only in circuit, set to the reference state of 10 dB.

Standard path, 10 dB ir	nput attenuation,	50 MHz (referen	ce condition)	1.09:1 (nominal)	
Standard path, 0 dB ing	out attenuation, 0	2.05:1 (nominal)				
Frequency	Option			1a Std, LNA off, PA off	1b Std, LNA on, PA off 1d Std, LNA on, PA on	1c Std, LNA off, PA on IF Path ≤ 40 MHz
	508, 513, and 526	544 and 550	555	(10 dB attenuation)	IF Path ≤ 40 MHz (0 dB attenuation)	(0 dB attenuation)
10 MHz to 3.6 GHz	X	x		1.20	1.30	1.70
			Х	1.20	1.30	1.80
0.01-0.4.011	х	х		1.30	1.50	1.60
3.6 to 8.4 GHz			Х	1.40	1.60	1.70
8.4 to 13.6 GHz	х			1.50	1.60	1.60
0.4 10 13.0 GHZ		х	х	1.30	1.40	1.50
	Х			1.60	1.70	1.70
13.6 to 17.1 GHz		х	х	1.30	1.40	1.40
	Х			1.80	1.80	1.80
17.1 to 26.5 GHz		х		1.40	1.40	1.50
			Х	1.60	1.60	1.70
		х		1.50	1.60	1.60
26.5 to 34.5 GHz			Х	1.70	1.70	1.80
		х		1.70	1.70	1.80
34.5 to 50 GHz			х	1.80	1.80	1.90
50.0 to 55.0 GHz			х	1.70	1.70	1.70

The magnitude of the mismatch over the range of frequencies will be very similar between MPB and non-MPB operation, between LNP and non-LNP operation, and between FBP and non-FBP operation, but the details, such as the frequencies of the peaks and valleys, will shift.

A similar process is used for computing the result when using the electronic attenuator under a wide range of settings: all even settings from 4 through 24 dB inclusive, with the mechanical attenuator set to 10 dB. The 95th percentile result was 0.20 dB.

VSWR plots

Figure 1. VSWR vs. frequency (0 to 3.5 GHz), 1a. Standard Path, 10 dB attenuation, measured on 3 units

Figure 2. VSWR vs. frequency (3.5 to 26.5 GHz), 1a. Standard Path, 10 dB attenuation, measured on 3 units

Figure 3. VSWR vs. frequency (26.5 to 50 GHz and 50 to 55 GHz), 1a. Standard Path, 10 dB attenuation, measured on 3 units

Resolution bandwidth switching unce	ertainty (reference to 30 kHz RWB), 20 to 30 °C				
1 Hz to 1.5 MHz RBW		< ± 0.03 dB			
1.6 MHz to 2.7 MHz RBW		< ± 0.05 dB			
3 MHz RBW		± 0.10 dB			
4, 5, 6, 8, 10 MHz RBW	± 0.30 dB				
Reference level					
Range					
Log scale		-170 to +30 dBm in 0.01 dB steps			
Linear scale		707 pV to 7.07 V with 0.11% (0.01 dB) resolution			
Accuracy (Only affects the display, not the measurement results from trace data or	he measurement, so it causes no additional error in markers.)	0 dB			
Display scale switching uncertainty					
Switching between linear and log (Only additional error in measurement results	affects the display, not the measurement, so it causes no from trace data or markers.)	0 dB			
Log scale/div switching (Only affects the error in measurement results from trace	display, not the measurement, so it causes no additional data or markers.)	0 dB			
Display scale fidelity (Log-linear fidel	ity, relative to the reference condition -25 dBm input three	ough 10 dB attenuation, thus -35 dBm at the input mixer			
Input mixer level	Full range	Typical			
-18 dBm ≤ ML ≤ -10 dBm	± 0.10 dB total	± 0.04 dB			
ML < -18 dBm input mixer level	± 0.07 dB	± 0.02 dB			
Preamplifiers (2 stages: Low-Noise A	Amplifier LNA, Pre-Amplifier PA)				
	Low-Noise Amplifier (LNA)	Pre-Amplifier (PA)			
Option P08	20 MHz to 8.4 GHz	9 kHz to 8.4 GHz			
Option P13	20 MHz to 13.6 GHz	9 kHz to 13.6 GHz			
Option P26	20 MHz to 26.5 GHz	9 kHz to 26.5 GHz			
Option P44, P4L	20 MHz to 44 GHz	9 kHz to 44 GHz			
Option P50, P5L	20 MHz to 50 GHz	9 kHz to 50 GHz			
Option P55, P5N	20 MHz to 55 GHz	9 kHz to 55 GHz			
	For options P4L/P5L/P5N: ≥ 43.5 GHz both LNA a	nd PA cannot be used simultaneously			
Noise figure	4 to 8 dB (nominal)	10 dB (nominal)			
	20 dB (nominal)	30 dB (nominal)			
Gain (up to 50 GHz)	When LNA and PA are used simultaneously, gain	= 40 dB (nominal)			
	13 dB (nominal)	16 dB (nominal)			
Gain (50 to 55 GHz)	When I NA and PA are used simultaneously gain	When LNA and PA are used simultaneously, gain = 24 dB (nominal)			

Dynamic Range Specifications

1 dB gain compression

Notes:

- Large signals, even at frequencies not shown on the screen, can cause the analyzer to mismeasure on-screen signals because of two-tone gain compression. This specification tells how large an interfering signal must be in order to cause a 1 dB change in an on-screen signal.

- Specified at 1 kHz RBW with 100 kHz tone spacing. The compression point will nominally equal the specification for tone spacing greater than 5 times the prefilter bandwidth. At smaller spacings, ADC clipping may occur at a level lower than the 1 dB compression point.

- Reference level and off-screen performance: The reference level (RL) behavior differs from some earlier analyzers in a way that makes this analyzer more flexible. In other analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in these analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarithmic amplifier in this signal analyzer, however, is implemented digitally such that the range and resolution greatly exceed other instrument limitations. Because of this, the analyzer can make measurements largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a measurement function, a marker can read out results that are off-screen, either above or below, without any change in accuracy. The only exception to the independence of RL and the way in which the measurement is performed is in the input attenuation setting: When the input attenuation is set to auto, the rules for the determination of the input attenuation, compression, and display scale fidelity) and small signal effects (noise), the measurement results can change with RL changes when the input attenuation is set to auto.

- Mixer power level (dBm) = total power at the input (dBm) - input attenuation (dB).

- Total power at the preamp (dBm) = total power at the input (dBm) - input attenuation (dB).

- The low noise path, when in use, does not substantially change the compression-to-noise dynamic range or the TOI-to-noise dynamic range because it mostly just reduces losses in the signal path in front of all significant noise, TOI and compression-affecting circuits. In other words, the compression threshold and the third-order intercept both decrease and to the same extent as that to which the DANL decreases.

Standard path: 1 dB gain compression (swept, standard, preselector on)

Large signals, even at frequencies not shown on the screen, can cause the analyzer to mismeasure on-screen signals because of two-tone gain compression. This specification tells how large an interfering signal must be in order to cause a 1 dB change in an on-screen signal. Mixer power level (dBm) = total power at the input (dBm) – input attenuation (dB).

Center frequency	Gain compression (nominal)				
	1a. PA Off	1b. LNA	1c. PA		
20 to 40 MHz	+3 dBm	–16 dBm	–13 dBm		
> 40 MHz to 3.6 GHz	+6 dBm	–16 dBm	–13 dBm		
> 3.6 to 13.5 GHz	+5 dBm	–16 dBm	–27 dBm		
> 13.5 to 26.5 GHz	+1 dBm	–20 dBm	–30 dBm		
> 26.5 to 50 GHz	0 dBm	–16 dBm	-32 dBm		

IF prefilter bandwidth

This table applies without *Option FS1* or *FS2*, fast sweep. With *Option FS1* or *FS2*, which is a standard option in the UXA, this table applies for sweep rates that are manually chosen to be the same as or slower than "traditional" sweep rates, instead of the much faster sweep rates, such as autocoupled sweep rates, available with *FS1* or *FS2*. Sweep rate is defined to be span divided by sweep time. If the sweep rate is ≤ 1.1 times RBW-squared, the table applies. Otherwise, compute an "effective RBW" = Span / (SweepTime × RBW). To determine the IF Prefilter Bandwidth, look up this effective RBW in the table instead of the actual RBW. For example, for RBW = 3 kHz, Span = 300 kHz, and Sweep time = 42 ms, we compute that Sweep Rate = 7.1 MHz/s, while RBW-squared is 9 MHz/s. So the Sweep Rate is < 1.1 times RBW-squared and the table applies; row 1 shows the IF Prefilter Bandwidth is nominally 8.9 kHz. If the sweep time is 1 ms, then the effective RBW computes to 100 kHz. This would result in an IF Prefilter Bandwidth from the third row, nominally 303 kHz.

Zero span or swept, RBW=	Sweep Type = FFT, FFT width =	-3 dB bandwidth (nominal)
≤ 3.9 kHz	< 4.01 kHz	8.9 kHz
4.3 to 27 kHz	< 28.81 kHz	79 kHz
30 to 160 kHz	< 167.4 kHz	303 kHz
180 to 390 kHz	< 411.9 kHz	966 kHz
430 kHz to 10 MHz	< 7.99 MHz	10.9 MHz

Displayed Average Noise Level (DANL)

Input terminated, Sample or Average detector, Averaging type set to Log, IF Gain = High, 1 Hz Resolution Bandwidth, 0 dB input attenuation.

Noise Floor Extension (Option	on NF2) improves DAN	L by 8 to 12 dB, for s	tandard path.			
	Ор	tion				Typical, unless otherwise
Frequency	508, 513 and 526	544 and 550	555	Full range	20 to 30 °C	stated
2 to 10 Hz	Х					–125 dBm (nominal)
21010112		X	Х			-95 dBm (nominal)
> 10 to 100 Hz	х					-127 dBm (nominal)
		X	Х		N/A	-114 dBm (nominal)
> 100 Hz to 1 kHz	Х				IN/A	-129 dBm (nominal)
		Х	х			-128 dBm (nominal)
> 1 to 9 kHz	Х					–138 dBm (nominal)
		Х	х			-136 dBm (nominal)
> 9 to 100 kHz	Х	Х	х	–141 dBm	–141 dBm	–146 dBm
> 100 kHz to 1 MHz	Х	Х	х	–148 dBm	–150 dBm	–153 dBm
> 1 to 10 MHz	Х	Х	Х	–152 dBm	–153 dBm	–156 dBm
> 10 MHz to 1.2 GHz	Х	Х	х	–151 dBm	–152 dBm	–155 dBm
> 1.2 to 2.1 GHz	Х	Х	х	–148 dBm	–150 dBm	–152 dBm
> 2.1 to 3.6 GHz	Х	Х	х	–147 dBm	–148 dBm	–150 dBm
	Х			–148 dBm	–150 dBm	–152 dBm
> 3.6 to 6.6 GHz		Х		–148 dBm	–149 dBm	–151 dBm
			х	–145 dBm	–146 dBm	–148 dBm
> 6.6 to 8.4 GHz	Х	Х		–148 dBm	–150 dBm	–152 dBm
> 0.0 to 8.4 GHZ			х	–147 dBm	–148 dBm	–150 dBm
	Х	Х		–146 dBm	–147 dBm	–151 dBm
> 8.4 to 13.6 GHz			х	–146 dBm	–147 dBm	–149 dBm
> 13.6 to 17 GHz	X	Х	Х	–146 dBm	–147 dBm	–151 dBm
> 17 to 22.5 GHz	X	Х	х	–144 dBm	–146 dBm	–149 dBm
> 22.5 to 26.5 GHz	X	Х	Х	–140 dBm	–142 dBm	–146 dBm
> 26 E to 20 CI I=		Х		–139 dBm	–141 dBm	–145 dBm
> 26.5 to 30 GHz			Х	–139 dBm	–141 dBm	–143 dBm
> 30 to 34 GHz		Х	х	–135 dBm	–138 dBm	–143 dBm
> 34 to 37 GHz		Х	х	–131 dBm	–133 dBm	–139 dBm
> 37 to 40 GHz		Х	х	–131 dBm	–133 dBm	–138 dBm
> 40 to 45 GHz		X	х	–127 dBm	–130 dBm	–136 dBm
> 45 to 50 GHz		Х	Х	-122 dBm	–126 dBm	–133 dBm
> 50 to 53 GHz			х	–122 dBm	–126 dBm	–131 dBm
> 53 to 55 GHz			х	-120 dBm	–121 dBm	–127 dBm

Noise Floor		Ontion				
Frequency	508, 513 and 526	Option 544 and 550	555	Full range	20 to 30 °C	Typical, unless otherwise stated
< 20 MHz	x	X	х			Not permitted with LNA on
00 / / 0 1 / 1	x				N/A	–164 dBm (nominal)
> 20 to 40 MHz		x	х			–160 dBm (nominal)
. 40.1. 500.1411	x			–165 dBm	–165 dBm	–167 dBm
> 40 to 500 MHz		x	х	–162 dBm	–163 dBm	–165 dBm
	x			–165 dBm	–165 dBm	–167 dBm
> 500 MHz to 2.5 GHz		x	х	–164 dBm	–165 dBm	–166 dBm
> 2.5 GHz to 3.6 GHz	X	X	х	–161 dBm	–163 dBm	–166 dBm
	Х			–163 dBm	–164 dBm	–167 dBm
> 3.6 to 4.7 GHz		X		–162 dBm	–163 dBm	–165 dBm
			х	–161 dBm	–162 dBm	–164 dBm
	Х			–162 dBm	–164 dBm	–166 dBm
> 4.7 to 8.4 GHz		X		–161 dBm	–163 dBm	–165 dBm
			х	–160 dBm	–162 dBm	–164 dBm
> 8.4 to 13.5 GHz	х	X	х	–161 dBm	–163 dBm	–165 dBm
> 13.5 to 17.1 GHz	Х	X	х	–161 dBm	–163 dBm	–164 dBm
> 17.1 to 22.5 GHz	x			–159 dBm	–161 dBm	–163 dBm
< 17.1 (0 22.0 GHZ		x	х	–158 dBm	–161 dBm	–162 dBm
> 22.5 to 26.5 GHz	X	X	х	–155 dBm	–156 dBm	–159 dBm
> 26.5 to 27 GHz		x	х	–153 dBm	–155 dBm	–160 dBm
> 27 to 34.5 GHz		X	х	–148 dBm	–152 dBm	–156 dBm
> 34.5 to 42.5 GHz		x	х	–142 dBm	–146 dBm	–152 dBm
> 42.5 to 47 GHz		X	х	–138 dBm	–141 dBm	–148 dBm
> 47 to 50 GHz		X	х	–134 dBm	–138 dBm	–145 dBm
> 50 to 53 GHz			х	–134 dBm	–138 dBm	–143 dBm
> 53 to 55 GHz			х	–131 dBm	–132 dBm	–138 dBm

1c. Standard path, PA on (swept, preselector on, LNA off, PA on)

Noise Floor Extension (Option NF2) improves DANL by 5 to 12 dB, for standard path, PA on.

		Option				Typical, unless otherwise
Frequency	508, 513 and 526	544 and 550	555	Full range	20 to 30 °C	stated
> 100 kHz to 200 kHz	Х	X	х			–151 dBm (nominal)
> 200 kHz to 500 kHz	Х	X	Х		N/A	-162 dBm (nominal)
> 500 kHz to 1 MHz	Х				N/A	–156 dBm (nominal)
		X	Х			-161 dBm (nominal)
1 MHz to 2.1 GHz	X	x	х	–163 dBm	–163 dBm	–165 dBm
> 2.1 to 3.6 GHz	X	X	Х	–160 dBm	–161 dBm	–163 dBm
> 3.6 to 8.4 GHz	Х	x	х	–161 dBm	–162 dBm	–164 dBm
> 8.4 to 13.6 GHz	X	X	х	–161 dBm	–162 dBm	–164 dBm
> 13.6 to 17.1 GHz	X	X	Х	–160 dBm	–162 dBm	–164 dBm
> 17.1 to 20.0 GHz	X	X	х	–159 dBm	–160 dBm	–163 dBm
> 20.0 to 26.5 GHz	X	X	Х	–155 dBm	–156 dBm	–160 dBm
> 26.5 to 30 GHz		X	Х	–155 dBm	–158 dBm	–160 dBm
> 30 to 34 GHz		x	Х	–153 dBm	–157 dBm	–159 dBm
> 34 to 40 GHz		x	Х	–150 dBm	–154 dBm	–156 dBm
> 40 to 45 GHz		X	Х	–147 dBm	–150 dBm	–152 dBm
> 45 to 50 GHz		x	х	–144 dBm	–147 dBm	–151 dBm
> 50 to 53 GHz			Х	–144 dBm	–146 dBm	–149 dBm
> 53 to 55 GHz			х	–139 dBm	–141 dBm	–146 dBm

1d. Standard	path, LNA on, PA on ((swept, preselector on,	LNA on, PA on)
--------------	-----------------------	-------------------------	----------------

Noise Floor Extension (Option NF2) improves DANL by 5 to 11 dB, for standard path, LNA on, PA on.

		Option				Typical, unless otherwise
Frequency	508, 513 and 526	544 and 550	555	Full range	20 to 30 °C	stated
< 20 MHz	x	X	Х	Not permitted	with LNA on	
> 20 to 40 MHz	х				N/A	–164 dBm (nominal)
20104010112		x	Х		IN/A	-160 dBm (nominal)
> 40 to 500 MHz	X			–165 dBm	–165 dBm	–167 dBm
2 40 10 300 MI IZ		X	Х	–162 dBm	–163 dBm	–165 dBm
> 500 MHz to 2.5 GHz	X			–165 dBm	–165 dBm	–167 dBm
> 500 MI 12 10 2.5 GI 12		x	Х	-164 dBm	–165 dBm	–166 dBm
> 2.5 to 3.6 GHz	X	X	Х	–161 dBm	–163 dBm	–165 dBm
> 3.6 to 8.4 GHz	x			–164 dBm	–165 dBm	–167 dBm
> 5.0 to 0.4 GHZ		X	Х	–162 dBm	–164 dBm	–167 dBm
> 8.4 to 13.5 GHz	x	x	Х	-163 dBm	–164 dBm	–167 dBm
> 13.5 to 17.1 GHz	х	x	Х	–161 dBm	–163 dBm	–166 dBm
> 17.1 to 23 GHz	x	x	Х	–161 dBm	–163 dBm	–165 dBm
> 23 to 26.5 GHz	х	x	Х	–158 dBm	–160 dBm	–163 dBm
> 26.5 to 36.5 GHz		x	Х	–156 dBm	–159 dBm	–161 dBm
> 36.5 to 43.5 GHz		x	Х	-152 dBm	–155 dBm	–158 dBm
> 43.5 to 47 GHz (for Option P44, P50, and P55)		x	x	–151 dBm	–153 dBm	–157 dBm
> 47 to 50 GHz (for Option P50 and P55)		x	х	–150 dBm	–152 dBm	–156 dBm
> 50 to 53 GHz (for Option P55)			х	–149 dBm	–150 dBm	–154 dBm
> 53 to 55 GHz (for Option P55)			х	–144 dBm	–146 dBm	–151 dBm
> 43.5 to 47 GHz (for Option P4L, P5L and P5N)		x	х	–138 dBm	–141 dBm	–148 dBm
> 47 to 50 GHz (for Option P5L and P5N)		x	х	–134 dBm	–138 dBm	–145 dBm
> 50 to 53 GHz (for Option P5N)			х	–134 dBm	–138 dBm	–143 dBm
> 53 to 55 GHz (for Option P5N)			х	–131 dBm	–132 dBm	–138 dBm

2a. Low-Noise Path (low-noise path enabled, preselector on, LNA off, PA off)

Noise Floor Extension (Option NF2) improves DANL by 8 to 12 dB, for low-noise path.

		Option				Typical, unless otherwise
Frequency	508, 513 and 526	544 and 550	555	Full range	20 to 30 °C	stated
< 3.6 GHz	X	Х	Х	Not permitted	with low noise path	
	X			–151 dBm	–153 dBm	–155 dBm
3.6 to 8.4 GHz		Х		-150 dBm	–152 dBm	–154 dBm
			х	-149 dBm	–150 dBm	–153 dBm
8.4 to 17.1 GHz	X			–151 dBm	–153 dBm	–155 dBm
0.4 to 17.1 GHZ		Х	х	-150 dBm	–152 dBm	–154 dBm
17.1 to 23 GHz	X	Х	х	-149 dBm	–151 dBm	–153 dBm
23 to 26.5 GHz	X	Х	х	-148 dBm	–150 dBm	–152 dBm
26.5 to 29 GHz		Х	х	-146 dBm	–148 dBm	–151 dBm
29 to 34.5 GHz		X	Х	–141 dBm	–143 dBm	–146 dBm
34.5 to 50 GHz		Х	х	–137 dBm	–139 dBm	–144 dBm
50 to 53 GHz			Х	–137 dBm	–139 dBm	–143 dBm
53 to 55 GHz			х	–134 dBm	–135 dBm	–140 dBm

2b. Low-noise path DANL (low-noise path enabled, preselector on, LNA on, PA off)

Frequency	2b. LNP path, LNA on (nominal)
< 3.6 GHz	Not permitted with low noise path
3.6 to 17.1 GHz	–165 dBm
> 17.1 to 23 GHz	–164 dBm
> 23 to 26.5 GHz	–162 dBm
> 26.5 to 29 GHz	-162 dBm
> 29 to 34.5 GHz	–160 dBm
> 34.5 to 50 GHz	–154 dBm
> 50 to 53 GHz	–152 dBm
> 53 to 55 GHz	–151 dBm

3a, 3b. Microwave preselect	tor bypass (MPB) path DANL (MPB path	enabled)
Frequency	3a. MPB path (nominal)	3b. MPB, LNA on (nominal)
3.6 to 8.4 GHz	-154 dBm	-163 dBm
> 8.4 to 17.1 GHz	-151 dBm	-162 dBm
> 17.1 to 22.5 GHz	-150 dBm	-161 dBm
> 22.5 to 26.5 GHz	-146 dBm	-159 dBm
> 26.5 to 30 GHz	-145 dBm	-159 dBm
> 30 to 34 GHz	-142 dBm	-158 dBm
> 34 to 40 GHz	-137 dBm	-154 dBm
> 40 to 45 GHz	-134 dBm	-153 dBm
> 45 to 50 GHz	-130 dBm	-150 dBm
> 50 to 53 GHz	-130 dBm	-150 dBm
> 53 to 55 GHz	-130 dBm	-146 dBm

If using microwave preselector path (MPB) use path 3b for digital demodulation.

Frequency	Full range	20 to 30 °C	Typical, unless otherwise stated
3.6 to 8.4 GHz	-154 dBm	-156 dBm	-158 dBm
> 8.4 to 13.6 GHz	-154 dBm	-155 dBm	-158 dBm
> 13.6 to 17.1 GHz	-154 dBm	-155 dBm	-158 dBm
> 17.1 to 22 GHz	-152 dBm	-153 dBm	-157 dBm
> 22 to 26.5 GHz	-152 dBm	-153 dBm	-156 dBm
> 26.5 to 29 GHz	-151 dBm	-152 dBm	-157 dBm
> 29 to 34.5 GHz	-150 dBm	-152 dBm	-155 dBm
> 34.5 to 45 GHz	-147 dBm	-149 dBm	-152 dBm
> 45 to 50 GHz	-145 dBm	-147 dBm	-151 dBm
> 50 to 53 GHz	-145 dBm	-147 dBm	-150 dBm
> 53 to 55 GHz	-143 dBm	-144 dBm	-148 dBm

4b. Full bypass (FBF) path	DANL (low-noise path enabled, preselector bypass on, LNA on) (nominal)
Frequency	4b. FBP, LNA on
3.6 to 8.4 GHz	-163 dBm
> 8.4 to 13.6 GHz	-163 dBm
> 13.6 to 17.1 GHz	-162 dBm
> 17.1 to 22 GHz	-161 dBm
> 22 to 26.5 GHz	-160 dBm
> 26.5 to 29 GHz	-160 dBm
> 29 to 34.5 GHz	-159 dBm
> 34.5 to 45 GHz	-154 dBm
> 45 to 50 GHz	-153 dBm
> 50 to 53 GHz	-153 dBm
> 53 to 55 GHz	-152 dBm

Residuals, Images, and Spurious Responses

200 kHz to 8.4 GHz (sw	ent)	–100 dBm		
Zero span or FFT or oth	1 /	–100 dBm (nominal)		
	ndard path, LNA off, PA off)			
Mixer level	Tuned frequency (f)	Excitation frequency	Full range	Typical
	10 MHz to 26.5 GHz	f+45 MHz	–80 dBc	–105 dBc
	10 MHz to 3.6 GHz	f+10,245 MHz	-80 dBc	–106 dBc
	10 MHz to 3.6 GHz	f+645 MHz	-80 dBc	–101 dBc
-10 dBm	> 3.6 to 13.6 GHz	f+645 MHz	–78 dBc	–87 dBc
	> 13.6 to 17.1 GHz	f+645 MHz	–74 dBc	–84 dBc
	> 17.1 to 22 GHz	f+645 MHz	–70 dBc	-82 dBc
	> 22 to 26.5 GHz	f+645 MHz	–68 dBc	–75 dBc
	26.5 to 55 GHz	f+45 MHz		-90 dBc (nominal)
-30 dBm	26.5 to 34.5 GHz	f+645 MHz	-70 dBc	-94 dBc
	34.4 to 42 GHz	f+645 MHz	-59 dBc	-76 dBc
	42 to 55 GHz ses (input-related, standard path,	· · · ·		-75 dBc (nominal)
		LNA off, PA off)	-	
N is the LO multiplication noise path (LNP).	uses (input-related, standard path, n factor. Refer to earlier table for the	LNA off, PA off) N value versus frequency ranges.	Performance is nominally Response	
N is the LO multiplication	nses (input-related, standard path, n factor. Refer to earlier table for the IHz from carrier)	LNA off, PA off) N value versus frequency ranges.	Response	the same, with PA on, and in lo including IF feedthrough, LO
N is the LO multiplication noise path (LNP). First RF order ($f \ge 10$ N	nses (input-related, standard path, n factor. Refer to earlier table for the IHz from carrier) 5 GHz	LNA off, PA off) N value versus frequency ranges. Mixer level	Response -80 dBc + 20*log(N)	the same, with PA on, and in lo including IF feedthrough, LO
N is the LO multiplication noise path (LNP). First RF order ($f \ge 10$ M Carrier frequency ≤ 26.5 Carrier frequency ≥ 26.5	Inses (input-related, standard path, n factor. Refer to earlier table for the IHz from carrier) 5 GHz 5 GHz	LNA off, PA off) N value versus frequency ranges. Mixer level -10 dBm	-80 dBc + 20*log(N) harmonic mixing res -90 dBc (nominal)	the same, with PA on, and in lo including IF feedthrough, LO ponses
N is the LO multiplication noise path (LNP). First RF order ($f \ge 10$ N Carrier frequency ≤ 26.5	Inses (input-related, standard path, n factor. Refer to earlier table for the MHz from carrier) 5 GHz 5 GHz 0 MHz from carrier)	LNA off, PA off) N value versus frequency ranges. Mixer level -10 dBm	-80 dBc + 20*log(N) harmonic mixing res -90 dBc (nominal)	the same, with PA on, and in lo including IF feedthrough, LO
N is the LO multiplication noise path (LNP). First RF order ($f \ge 10$ N Carrier frequency ≤ 26.5 Carrier frequency > 26.5 Higher RF order ($f \ge 10$ Carrier frequency ≤ 26.5	Alses (input-related, standard path, n factor. Refer to earlier table for the AHz from carrier) 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz	LNA off, PA off) N value versus frequency ranges. Mixer level -10 dBm -30 dBm	-80 dBc + 20*log(N) harmonic mixing res -90 dBc (nominal) -80 dBc + 20*log(N)	the same, with PA on, and in lo including IF feedthrough, LO ponses
N is the LO multiplication noise path (LNP). First RF order ($f \ge 10$ N Carrier frequency ≤ 26.5 Carrier frequency ≥ 26.5 Higher RF order ($f \ge 10$	Alter the second standard path, in factor. Refer to earlier table for the Alter from carrier) 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz	LNA off, PA off) N value versus frequency ranges. Mixer level -10 dBm -30 dBm -40 dBm	Response -80 dBc + 20*log(N) harmonic mixing res -90 dBc (nominal) -80 dBc + 20*log(N) responses -90 dBc (nominal)	the same, with PA on, and in lo including IF feedthrough, LO ponses
N is the LO multiplication noise path (LNP). First RF order ($f \ge 10$ N Carrier frequency ≤ 26.5 Carrier frequency ≥ 26.5 Higher RF order ($f \ge 10$ Carrier frequency ≤ 26.5 Carrier frequency ≥ 26.5	Also of the standard path, in factor. Refer to earlier table for the AHz from carrier) 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz 5 GHz	LNA off, PA off) N value versus frequency ranges. Mixer level -10 dBm -30 dBm -40 dBm	-80 dBc + 20*log(N) harmonic mixing res -90 dBc (nominal) -80 dBc + 20*log(N) responses	the same, with PA on, and in Ic including IF feedthrough, LO ponses

Nominally -40 dBc under large magnetic (0.38 Gauss rms) or vibrational (0.21 g rms) environmental stimuli.

Second-Harmonic Intercept (SHI)

Frequency of the fundamental	Mixer level	Distortion	SHI
10 to 500 MHz	–15 dBm	-65 dBc	+50 dBm
> 500 MHz to 1.8 GHz	–15 dBm	–60 dBc	+45 dBm
> 1.8 to 3 GHz	–15 dBm	–77 dBc	+62 dBm
> 3 to 4.5 GHz	–15 dBm	–76 dBc	+61 dBm
> 4.5 to 6.5 GHz	–15 dBm	–77 dBc	+62 dBm
> 6.5 to 10 GHz	–15 dBm	-80 dBc	+65 dBm
> 10 to 13.25 GHz	–15 dBm	-80 dBc	+65 dBm
> 13.25 to 25 GHz	–15 dBm	–68 dBc	+53 dBm

1b. Standard path (swept, preselector of	b. Standard path (swept, preselector on, LNA on, PA off) Preamp level = Input level – Input attenuation		
Frequency of the Fundamental	Preamp level	Distortion (nominal)	SHI (nominal)
15 to 40 MHz	–45 dBm	–65 dBc	+20 dBm
> 40 MHz to 1 GHz	-45 dBm	–63 dBc	+18 dBm
> 1 to 1.8 GHz	–45 dBm	–61 dBc	+16 dBm
> 1.8 to 13.25 GHz	–45 dBm	–63 dBc	+18 dBm

1c. Standard path (swept, preselector on, LNA off, PA on) Preamp level = Input level – Input attenuation			
Frequency of the Fundamental	Preamp level	Distortion (nominal)	SHI (nominal)
10 to 400 MHz	–45 dBm	–78 dBc	+33 dBm
> 400 MHz to 1.8 GHz	–45 dBm	–73 dBc	+28 dBm
> 1.8 to 4 GHz	–50 dBm	–55 dBc	+5 dBm
> 4 to 13.25 GHz	–50 dBm	–60 dBc	+10 dBm
> 13.25 to 25 GHz	–50 dBm	–50 dBc	0 dBm

1d. Standard path (swept, preselector on, LNA on, PA on) Preamp level = Input level – Input attenuation			
Frequency of the fundamental	Preamp level	Distortion (nominal)	SHI (nominal)
1.8 to 4 GHz	–50 dBm	-44 dBc	–6 dBm
> 4 to 13.25 GHz	–50 dBm	–47 dBc	–3 dBm

2a. Low-noise path: SHI (swept, Low-no	. Low-noise path: SHI (swept, Low-noise path enable, preselector on, LNA off, PA off)		
Frequency of the fundamental	Mixer level	Distortion	SHI
1.8 to 2.5 GHz	–15 dBm	–95 dBc	+80 dBm
> 2.5 to 10 GHz	–15 dBm	–101 dBc	+86 dBm
> 10 to 13.25 GHz	–15 dBm	–101 dBc	+86 dBm
> 13.25 to 25 GHz	–15 dBm	–92 dBc	+77 dBm

Third-Order Intercept (TOI)

1a. Standard path (swept, preselector on, LNA off, PA off)

Two –16 dBm (10 MHz to 26.5 GHz) or –20 dBm (26.5 GHz to 50 GHz) tones at input mixer with tone separation ≥ 100 kHz

Frequency	Full range	20 to 30 °C	Typical, unless otherwise stated
10 to 200 MHz	+9 dBm	+12 dBm	+18 dBm
> 200 to 600 MHz	+16 dBm	+17 dBm	+20 dBm
> 600 MHz to 2.0 GHz	+18.5 dBm	+19.5 dBm	+22 dBm
> 2.0 to 3.6 GHz	+18.5 dBm	+19.5 dBm	+23 dBm
> 3.6 to 7.1 GHz	+15 dBm	+16 dBm	+18 dBm
> 7.1 to 10 GHz	+14.5 dBm	+15 dBm	+18 dBm
> 10 to 13.6 GHz	+17.5 dBm	+18.5 dBm	+22 dBm
> 13.6 to 19 GHz	+7 dBm	+9.5 dBm	+12 dBm
> 19 to 23 GHz	+12 dBm	+14 dBm	+16 dBm
> 23 to 26.5 GHz	+13 dBm	+14.5 dBm	+18 dBm
> 26.5 GHz to 34.5 GHz	+11 dBm	+13 dBm	+ 17 dBm
> 34.5 to 50 GHz	+ 7 dBm	+9 dBm	+14 dBm

1b. Standard path (swept, preselector on, LNA on, PA off)

Two –34 dBm tones at preamp level with tone separation \ge 100 kHz

Frequency	TOI (nominal)
30 to 200 MHz	0 dBm
> 200 to 600 MHz	+1 dBm
> 600 MHz to 3 GHz	+2.5 dBm
> 3 to 3.6 GHz	+5 dBm
> 3.6 to 4 GHz	–1 dBm
> 4 to 8 GHz	0 dBm
> 8 to 13.6 GHz	+2 dBm
> 13.6 to 19 GHz	–5 dBm
> 19 to 26.5 GHz	0 dBm

1c. Standard path (swept, preselector on, LNA off, PA on)

Two –34 dBm (10 MHz to 3.6 GHz) or –50 dBm (3.6 GHz to 26.5 GHz) tones at LNA input with tone separation ≥ 100 kHz

Frequency	TOI (nominal)
10 to 200 MHz	+2 dBm
> 200 to 400 MHz	+3 dBm
> 400 MHz to 1 GHz	+4 dBm
> 1 to 3.6 GHz	+5 dBm
> 3.6 to 4 GHz	–14 dBm
> 4 to 8 GHz	–13 dBm
> 8 to 13.6 GHz	-8 dBm
> 13.6 to 19 GHz	–17 dBm
> 19 to 26.5 GHz	–12 dBm

1d.	Standard	path (swep	, preselector on	, LNA on, PA on)
-----	----------	------------	------------------	------------------

Two –50 dBm tones at preamp level with tone separation ≥ 100 kH	Ηz
---	----

•	
Frequency	TOI (nominal)
3.6 to 4 GHz	-22 dBm
> 4 to 8 GHz	–20 dBm
> 8 to 13.6 GHz	–16 dBm
> 13.6 to 19 GHz	–24 dBm
> 19 to 26.5 GHz	–21 dBm

Two -16 dBm (3.6 GHz to 26.	5 GHz) or -20 dBm (26.5 GHz to 5	OGHz) tones at input mixer with tone sepa	ration ≥ 100 kHz
Frequency	Full range	20 °C to 30 °C	Typical
3.6 to 7.6 GHz	+9 dBm	+10 dBm	+13 dBm
> 7.6 to 10 GHz	+10 dBm	+11 dBm	+14 dBm
> 10 to 13.6 GHz	+11 dBm	+12 dBm	+15 dBm
> 13.6 to 19 GHz	+2 dBm	+4 dBm	+7 dBm
> 19 to 23 GHz	+6 dBm	+7 dBm	+10 dBm
> 23 to 26.5 GHz	+6 dBm	+8 dBm	+10 dBm
> 26.5 GHz to 34.5 GHz	+3 dBm	+6 dBm	+8 dBm
> 34.5 to 50 GHz	+1.5 dBm	+4 dBm	+7 dBm

Phase Noise (SSB)

Phase noise	Offset	Full range	20 to 30 °C	Typical, unless otherwise stated
	10 Hz Wide Ref Loop BW		The factory test line limit is consistent with a warranted specification of –90 dBc/Hz	–93 dBc/Hz
	10 Hz Narrow Ref Loop BW			-88 dBc/Hz (nominal)
Noise	100 Hz	–107 dBc/Hz	–107 dBc/Hz	–112 dBc/Hz
sidebands (CF = 1 GHz)	1 kHz	–124 dBc/Hz	-125 dBc/Hz	–129 dBc/Hz
	10 kHz	–132 dBc/Hz	–134 dBc/Hz	–136 dBc/Hz
	100 kHz	–138 dBc/Hz	–139 dBc/Hz	–141 dBc/Hz
	1 MHz	–144 dBc/Hz	–145 dBc/Hz	–146 dBc/Hz
	10 MHz	–154 dBc/Hz	–154 dBc/Hz	–157 dBc/Hz

Nominal Phase Noise at Different Center Frequencies with RBW Selectivity Curves, Optimized Phase Noise, Versus Offset Frequency

not observed, phase noise, computed from the 25.2 GHz observation. See the footnotes in the Frequency Stability section for the details of phase noise performance versus center frequency.

Figure 3. Nominal PXA phase noise at various center frequencies. RBW curves added to show impact of analyzer phase noise in resolving two closely spaced signals for various RBW filter choices.

IQ Analyzer

All specifications based on preselector by-passed (RF Path either Microwave Preselector Bypass or Full Bypass) (except <3.6 GHz), unless otherwise noted. IF Paths at 10, 25, 40, and 255 MHz are enabled by any of R10, R15, or R20. Each bandwidth option includes and enables all others with lesser bandwidth, e.g. instruments with R20 also have R15 and R10 licenses, plus B2X, B40, and B25 paths.

10 MHz Analysis Bandwidth (Standard)

Specifications on this bandwidth apply with center frequencies of 10 MHz and higher. All specifications apply under the following settings unless otherwise specified: preselector bypassed, PA off, LNA off, IF gain = Auto, IF gain offset = 0 dB.

10 MHz analysis bar	•	•						
Analysis bandwidth ra	ange	10 Hz to 10) MHz					
Tuning range		2 Hz to 55	GHz	In practice, low end of tuning range limited to < (½*BW), by image folding and LO feedthrough. Over-range tuning to 55.5 GHz allowed, but without corrections, performance not specified				
IF frequency		5122.5 MH 322.5 MHz	z (1 st IF, center freque (Final IF)					
ADC sample rate		100 MSa/s	ec					
ADC resolution		16 bits						
Final data format		I & Q pairs,	32 bits each, 64 bits/	Sa				
Capture memory		2 GB						
IQ Analyzer		32,000,001	sample pairs					
		536.8 MSa	(229 Sa) with 32-bit da					
Length (IQ sample pa	airs)	268.4 MSa	268.4 MSa (228 Sa) with 64-bit data packing					
Maximum capture tim length)	ne (time record	35.8 sec at packing	full 10 MHz BW with 3	32-bit data	Capture	e time increases lir	nearly v	with decrease in bandwidth
IF frequency respo	nse							
Center frequency	Span (MHz)	Preselector	Amplitude max error	Amplitude midv Error (95%)	width	Slope (dB/MHz (95%))	Amplitude RMS (nominal)
0.02 to 3.6 GHz	≤ 10	NA	± 0.20 dB	± 0.12 dB		± 0.10		0.02 dB
> 3.6 to 26.5 GHz	≤ 10	Off	± 0.25 dB	± 0.12 dB		± 0.10		0.02 dB
> 26.5 to 34.4 GHz	≤ 10	Off	± 0.30 dB	± 0.12 dB		± 0.10		0.024 dB
> 34.4 to 55 GHz	≤ 10	Off	± 0.35 dB	± 0.12 dB		± 0.10		0.024 dB
IF phase linearity								
Center frequency		Span (MHz)				Preselector	RMS	S (nominal)
≥ 0.02 GHz, ≤ 3.6 Gł	Ηz	≤ 10 MHz				N/A	0.04	0
						Off	0.07	0
> 3.6 to 50 GHz	Hz ≤ 10 MHz					U II	0.07	

25 MHz Analysis Bandwidth (Option B25)

Specifications on this bandwidth apply with center frequencies of 15 MHz and higher. All specifications apply under the following settings unless otherwise specified: preselector bypassed, PA off, LNA off, IFgain = Auto, IF gain offset = 0 dB.

25 MHz analysis bandwidth (O					
Analysis bandwidth range	10 Hz to 25 MHz				
Tuning range	2 Hz to 55 GHz			In practice, low end of tuning range limited to < (½*BW), by image folding and LO feedthrough. Over-range tuning to 55.5 GHz allowed, but without corrections, performance not specified	
IF frequency	5122.5 MHz (1st I 322.5 MHz (Final	· ·			
ADC sample rate	100 MSa/sec				
ADC resolution	16 bits				
Final data format	I & Q pairs, 32 bit	s each, 64 bits/	Sa		
Capture memory	2 GB				
IQ Analyzer	32,000,001 samp	•			
Length (IQ sample pairs)	536.8 MSa (2 ²⁹ S 268.4 MSa (2 ²⁸ S	/			
Maximum capture time (time record length)	11.9 sec at full 25	,	Capture time increases linearly with decrease in bandwidth		
IF frequency response					
Center frequency	Span (MHz)	Preselector		Amplitude mx error	Amplitude RMS (nominal)
0.02 to 3.6 GHz	10 to <= 25	NA		± 0.30 dB	0.05 dB
> 3.6 to 26.5 GHz	10 to <= 25	Off		± 0.40 dB	0.04 dB
> 26.5 to 55 GHz	10 to <= 25	Off		± 0.60 dB	0.04 dB
IF phase linearity					
Center frequency	Span (MHz)	Preselector			RMS (nominal)
≥ 0.02 GHz, ≤ 3.6 GHz	≤ 25 MHz	N/A			0.12°
> 3.6 to 50 GHz	≤ 25 MHz	Off			0.28°
> 50 to 55 GHz	≤ 25 MHz	Off			1.00°
Full scale (ADC clipping); pres	elector bypassed, LN	A off, PA off (I	nominal)		
	a rough estimate of the			verload occurs. Actual clipping leve	Is vary significantly; this is only a guide.
Center frequency		Option		Mixer level for IF gain = low	Mixer level for IF gain = high
	508, 513 and 526	544 and 550	555		
		v	v	0 dDm	19 dBm

40 MHz Analysis Bandwidth (Option B40)

Specifications on this bandwidth apply with center frequencies of 65 MHz and higher. All specifications apply under the following settings unless otherwise specified: preselector bypassed, PA off, LNA off, IF gain = Auto, IF gain offset = 0 dB.

Tuning range	2 Hz to 55 GHz		In practice, low end of tuning range limited to < (½*BW), by imag folding and LO feedthrough. Over-range tuning to 55.5 GHz allowed, but without corrections, performance not specified.		
IF frequency	5050 MHz (1st IF, cente 250 MHz (Final IF)	er frequency \leq 3.6 GHz)			
ADC sample rate	200 MSa/sec				
ADC resolution	12 bits				
Final data format	I & Q pairs, 32 bits eac	h, 64 bits/Sa			
Capture memory	2 GB				
IQ Analyzer	32,000,001 sample pai	rs			
Length (IQ comple naire)	536,870,912 (229 Sa) w	ith 32-bit data packing			
Length (IQ sample pairs)	268,435,456 (228 Sa)	with 64-bit data packing			
Maximum capture time (time record	8.95 sec at full 40 MHz packing	BW with 32-bit data	Capture time increases	linearly with decrease in bandwidth	
length)	4.47 sec at full 40 MHz packing	BW with 64-bit data			
IF frequency response					
Center frequency	Span (MHz)	Preselector	Amplitude max error	Amplitude RMS (nominal)	
0.02 to 3.6 GHz	≤ 40	NA	± 0.40 dB	0.07 dB	
> 3.6 to 8.4 GHz	≤ 40	Off	± 0.60 dB	0.05 dB	
> 8.4 to 26.5 GHz	≤ 40	Off	± 0.70 dB	0.05 dB	
> 26.5 to 34.4 GHz	≤ 40	Off	± 0.80 dB	0.10 dB	
> 34.4 to 55 GHz	≤ 40	Off	± 1.00 dB	0.10 dB	
IF phase linearity					
Center frequency	Span (MHz)		Preselector	RMS (nominal)	
≥ 0.02 GHz, ≤ 3.6 GHz	≤ 40 MHz		N/A	0.12°	
> 3.6 to 50 GHz	≤ 40 MHz		Off	0.32°	
> 50 to 55 GHz	≤ 40 MHz		Off	1.00°	
IF dynamic range (IF gain = low) (nor	ninal)				
SFDR (spurious-free dynamic range) (ADC related spurious)	-77 dBc		Signal at –12 dBFS, any	where in full IF width	
IF residual responses (relative to full	scale, input terminated, I	F gain = low) (nominal)			
65 MHz to 34.5 GHz	-110 dBFS	• · · · · · · · · · · · · · · · · · · ·			
> 34.5 to 50 GHz	-105 dBFS				
		off (nominal)			
Full scale (ADC clipping): prescleate	i bypasseu, LIVA UII, PA (in (nonnai)			
Full scale (ADC clipping); preselecto		al at which ADC avertand	annung Antun Inlinging Inun	a van vaignifiaantly this is anly a mydda	
Full scale (ADC clipping level) is a roug	h estimate of the signal leve	el at which ADC overload	occurs. Actual clipping level	s vary significantly; this is only a guide.	
	h estimate of the signal leve	el at which ADC overload	occurs. Actual clipping level	s vary significantly; this is only a guide.	

Center frequency		Option		Mixer level for IF gain = low	Mixer level for IF gain = high
	508, 513 and 526	544 and 550	555		
2 Hz to 26.5 GHz	х	х	Х	–8 dBm	–18 dBm
> 26.5 to 34.5 GHz		х	Х	–8 dBm	–18 dBm
> 34.5 to 50 GHz		х	х	–8 dBm	–12 dBm

> 50 to 55 GHz		X	–7 dBm		-8 dBm		
Effect of signal frequency \neq CF			Up to ±1 dB				
Signal to noise ratio (ratio of c	lipping level to noise level, I	og averaged, 1 Hz	RBW, IF gain = Low) (nominal)			
Center frequency							
≤ 3.6 GHz			143 dB				
> 17.1 to 26.5 GHz			141 dB				
> 26.5 to 50 GHz			135 dB				
TOI (3rd-order intermodulatio	n distortion in the IF, 2 tones	s of equal level @ -	19 dBFS, 10 MHz to	ne separation) (no	minal)		
Center frequency							
≤ 3.6 GHz			-83 dBc				
> 3.6 to 13.6			-83 dBc				
> 13.6 to 26.5 GHz			-83 dBc				
> 26.5 to 50 GHz			–79 dBc				
Noise density in IF (characteri	zed at center of RF band and	d center of IF, 0 dB	attenuation)				
The noise level in the IF will char	nge for frequencies away from	the center of the IF.	The IF part of the to	tal noise is nominall	y ± 1.2 dB worse at	the	
worst frequency within the IF bar	0 1 7						
Center frequency	3a.	МРВ	3b. L	NA on	4a. FBP		
	IF gain = low	IF gain = high	IF gain = low	IF gain = high	IF gain = low	IF gain = high	
65 MHz to 3.6 GHz	–145 dBm/Hz	–145 dBm/Hz	–158 dBm/Hz	–158 dBm/Hz	N/A	N/A	
> 3.6 to 8.4 GHz	–150 dBm/Hz	–152 dBm/Hz	–160 dBm/Hz	–160 dBm/Hz	–152 dBm/Hz	–156 dBm/Hz	
> 8.4 to 13.6 GHz	–149 dBm/Hz	–150 dBm/Hz	–158 dBm/Hz	–158 dBm/Hz	–152 dBm/Hz	–156 dBm/Hz	
> 13.6 to 17.1 GHz	–149 dBm/Hz	–151 dBm/Hz	–158 dBm/Hz	–158 dBm/Hz	–152 dBm/Hz	–156 dBm/Hz	
> 17.1 to 26.5 GHz	–146 dBm/Hz	–146 dBm/Hz	–155 dBm/Hz	–155 dBm/Hz	–152 dBm/Hz	–154 dBm/Hz	
> 26.5 to 34.5 GHz	–142 dBm/Hz	–142 dBm/Hz	–152 dBm/Hz	–152 dBm/Hz	–150 dBm/Hz	–150 dBm/Hz	
> 34.5 to 50 GHz	–132 dBm/Hz	–132 dBm/Hz	–143 dBm/Hz	143 dBm/Hz	–145 dBm/Hz	–145 dBm/Hz	
> 50 to 53 GHz	–132 dBm/Hz	–132 dBm/Hz	–143 dBm/Hz	–143 dBm/Hz	–143 dBm/Hz	–143 dBm/Hz	
> 53 to 55 GHz	–126 dBm/Hz	–126 dBm/Hz	–136 dBm/Hz	–136 dBm/Hz	–141 dBm/Hz	–141 dBm/Hz	
Spurious responses (preselec	tor enabled for frequencies	> 3.6 GHz) (nomina	I)				
Residual responses (input terr	minated, 0 dB attenuation, IF	[:] gain = low)					
Center frequency							
< 3.6 GHz			–100 dBm				
3.6 to 40 GHz			–105 dBm				
> 40 GHz			–95 dBm				
Image responses							
			Excitation freque	ency			
			Exolution negat				
Tuned frequency (f)			f + 2 * 1 st IF MHz	•			
Tuned frequency (f) 10 MHz to 3.6 GHz				-			

255 MHz Analysis Bandwidth (Option B2X)

Specifications on this bandwidth apply with center frequencies of 400 MHz and higher. All specifications apply under the following settings unless otherwise specified: preselector bypassed, PA off, LNA off, IF gain = Auto, IF gain offset = 0 dB. IF frequency response and IF amplitude accuracy performance between 18 and 26.5 GHz for Type-N connectorized instruments is nominal.

Analysis bandwidth range	10 Hz to 255 MH	Z					
Tuning range	2 Hz to 55 GHz		In practice, low end of tuning range limited to < (½*BW), by image folding and LO feedthrough. Over-range tuning to 55.5 GHz allowed, but without corrections, performance not specified.				
IF frequency	5490 MHz (1⁵t IF 690 MHz (Final I	, center frequency :	≤ 3.6 GHz)				
ADC sample rate	4.8 GSa/sec						
ADC resolution	14 bits						
Final data format	I & Q pairs, 32 bi 64 bits/Sa	ts each,					
Capture memory	16 GB						
IQ Analyzer	32,000,001 sam	ole pairs					
Length (IQ sample pairs)		mples with 32-bit o	data packing				
Maximum capture time (time record length)	14.3 sec at full 2	•	1 0	Capture time	increases linearly w	ith decrease ir	n bandwidth
IF frequency response (span s	≤ 255 MHz), micro	wave preselector	bypass path (MPB)				
	3a. MPB (10 dB attenuation)			3b. LNA on	(0 dB attenuation)	3c. PA on	(0 dB attenuation)
Center frequency	Full range	20 to 30 °C	RMS (nominal)	Nominal	RMS (nominal)	Nominal	RMS (nominal)
600 MHz to 3.3 GHz	± 1.05 dB	± 0.90 dB	0.06 dB	± 0.15 dB	0.06 dB	± 0.30 dB	0.20 dB
> 3.3 to 8.4 GHz	± 1.00 dB	± 0.80 dB	0.06 dB	± 0.15 dB	0.10 dB	± 0.20 dB	0.15 dB
> 8.4 to 26.5 GHz	± 1.15 dB	± 1.05 dB	0.10 dB	± 0.40 dB	0.20 dB	± 0.35 dB	0.20 dB
> 26.5 to 34.4 GHz	± 1.70 dB	± 1.55 dB	0.20 dB	± 0.45 dB	0.20 dB	± 0.55 dB	0.30 dB
> 34.4 to 48.55 GHz	± 2.70 dB	± 2.45 dB	0.20 dB	± 0.60 dB	0.30 dB	± 0.90 dB	0.50 dB
> 48.55 to 50 GHz	± 0.65 dB (nomi	nal)	0.30 dB	± 0.75 dB	0.30 dB	± 1.10 dB	0.50 dB
> 50 to 55 GHz	± 0.65 dB (nomi	nal)	0.30 dB	± 0.75 dB	0.30 dB	± 1.10 dB	0.55 dB
IF frequency response (span s	≤ 255 MHz) full by	pass path (FBP)					
	4a.	FBP (10 dB attenu	uation)		4b. LNA on (0	dB attenuatio	n)
Center frequency	Full range	20 to 30 °C	RMS (nominal)	Nominal		RMS (nominal)	
> 3.3 to 8.4 GHz	± 0.90 dB	± 0.80 dB	0.07 dB	± 0.20 dB		0.15 dB	
> 8.4 to 26.5 GHz	± 1.15 dB	± 1.05 dB	0.10 dB	± 0.35 dB		0.20 dB	
> 26.5 to 34.4 GHz	± 1.60 dB	± 1.50 dB	0.15 dB	± 0.35 dB		0.20 dB	
> 34.4 to 48.55 GHz	± 2.80 dB	± 2.45 dB	0.20 dB	± 0.65 dB		0.30 dB	
> 48.55 to 55 GHz	± 0.80 dB (nomi	nal)	0.30 dB	± 0.95 dB		0.30 dB	
IF phase linearity							
Center frequency	Span (MHz)			Preselector		RMS (nominal)	
≥ 0.02 GHz, ≤ 3.3 GHz	≤ 255			N/A		4°	
3.3 to 26.5 GHz	≤ 255			Off		0.80°	
26.5 to 55 GHz	≤ 255			Off		1.50°	
IF dynamic range (IF gain = hi							
SFDR (spurious-free dynamic range) (ADC related spurious)	–78 dBc			Signal at –27	dBFS, anywhere in	full IF width	
IF residual responses (relative	to full scale. inni	It terminated. IF o	ain = low) (nominal)				
		g and a second sec	, (noninal)	–100 dBFS			

Full scale (ADC clipping); preselector bypassed, LNA off, PA off (nominal)

Full scale (ADC clipping level) is a rough estimate of the signal level at which ADC overload occurs. Actual clipping levels vary significantly; this is only a guide. Mixer level is RF input level less attenuation setting.

		Option					
Center frequency	508, 513 and 526	544 and 550	555	Mixer level for IF gain = low	Mixer level for l	F gain = high	
≤ 3.3 GHz	Х	х	Х	–15 dBm	–15 dBm		
> 3.3 to 13.3 GHz	Х			–8 dBm	–17 dBm		
> 5.5 10 15.5 GHZ		х	Х	–10 dBm	–19 dBm		
> 13.3 to 26.5 GHz	Х			–10 dBm	–17 dBm		
× 15.5 to 20.5 GHz		х	Х	–12 dBm	–19 dBm		
> 26.5 to 50 GHz		X	Х	–11 dBm	–14 dBm		
> 50 to 55 GHz			Х	– 5 dBm	– 6 dBm		
Effect of signal frequency $\neq C$)F			Up to ±2.5 dB nominal			
Signal to noise ratio (ratio o	of clipping level to noise	e level, log average	d, 1 Hz RBV	V, IF gain = Low) (nominal)			
Center frequency							
≤ 3.6 GHz	145 dB						
> 17.1 to 26.5 GHz	140 dB						
> 26.5 to 50 GHz	137 dB						
TOI (3rd-order intermodulat tonseparation) (nominal)	tion distortion in the IF,	2 tones of equal lev	vel @ -25 dl	BFS (≤ 26.5 GHz) or –23 dBFS (>	26.5 GHz to 50 GHz	z), 1 MHz	
Center frequency							
< 3.3 GHz	-75 dBc						
> 3.3 to 20 GHz	-76 dBc						
> 20 to 26.5 GHz	-76 dBc						
Noise density in IF (charact				nuation) e IF part of the total noise is nomina	ally ±1.0 dB worse a	t the	
Noise density in IF (charact The noise level in the IF will o worst frequency within the IF	terized at center of RF b change for frequencies av bandwidth.			·	·	t the LNA on	
Noise density in IF (charact The noise level in the IF will o worst frequency within the IF	terized at center of RF b change for frequencies av bandwidth.	vay from the center of a. MPB	f the IF. The	e IF part of the total noise is nomina 4a. FBP	3b.	LNA on	
Noise density in IF (charact The noise level in the IF will c worst frequency within the IF Center frequency	terized at center of RF b change for frequencies av bandwidth. IF gain = low	vay from the center of Ba. MPB IF gain = high	f the IF. The	e IF part of the total noise is nomina 4a. FBP ain = low IF gain = high	3b. IF gain = low	LNA on IF gain = higl	
Noise density in IF (charact The noise level in the IF will c worst frequency within the IF Center frequency 400 MHz to 3.3 GHz	terized at center of RF b change for frequencies av bandwidth. IF gain = low -146 dBm/Hz	A from the center of the cente	if the IF. The IIF ga	e IF part of the total noise is nomina 4a. FBP ain = low IF gain = high N/A	3b. IF gain = low -160 dBm/Hz	LNA on IF gain = higi –160 dBm/Hz	
Noise density in IF (charact The noise level in the IF will c worst frequency within the IF Center frequency 400 MHz to 3.3 GHz > 3.3 to 8.6 GHz	terized at center of RF b change for frequencies av bandwidth. IF gain = low -146 dBm/Hz -151 dBm/Hz	A from the center of the cente	f the IF. The IIF ga N/A -155	e IF part of the total noise is nomina 4a. FBP ain = low IF gain = high N/A 5 dBm/Hz -158 dBm/Hz	3b. IF gain = low -160 dBm/Hz -160 dBm/Hz	LNA on IF gain = higl -160 dBm/Hz -160 dBm/Hz	
Noise density in IF (charact The noise level in the IF will c worst frequency within the IF Center frequency 400 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz	terized at center of RF b change for frequencies av bandwidth. IF gain = low -146 dBm/Hz -151 dBm/Hz -151 dBm/Hz	A way from the center of a. MPB IF gain = high -145 dBm/Hz -153 dBm/Hz -151 dBm/Hz	f the IF. The I IF ga N/A -155 -155	ain = low IF gain = high 5 dBm/Hz -158 dBm/Hz 5 dBm/Hz -157 dBm/Hz	3b. IF gain = low -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz	LNA on IF gain = higl -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz	
Noise density in IF (charact The noise level in the IF will c worst frequency within the IF Center frequency 400 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 13.3 to 26.5 GHz	terized at center of RF b change for frequencies av bandwidth. IF gain = low -146 dBm/Hz -151 dBm/Hz -151 dBm/Hz -151 dBm/Hz -146 dBm/Hz	Avay from the center of a. MPB IF gain = high -145 dBm/Hz -153 dBm/Hz -151 dBm/Hz -146 dBm/Hz	f the IF. The IF gr N/A -155 -155 -152	4a. FBP ain = low IF gain = high N/A 5 dBm/Hz -158 dBm/Hz 5 dBm/Hz -157 dBm/Hz 2 dBm/Hz -153 dBm/Hz	3b. IF gain = low -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz	LNA on IF gain = higl -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz	
Noise density in IF (charact The noise level in the IF will c worst frequency within the IF Center frequency 400 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 13.3 to 26.5 GHz > 26.5 to 34 GHz	terized at center of RF b change for frequencies av bandwidth. IF gain = low -146 dBm/Hz -151 dBm/Hz -151 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz	Vay from the center of Ba. MPB IF gain = high -145 dBm/Hz -153 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz	f the IF. The IF gr N/A -155 -152 -152 -152	4a. FBP 4a. FBP ain = low IF gain = high N/A 5 dBm/Hz -158 dBm/Hz 5 dBm/Hz -157 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz	3b. IF gain = low -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz	LNA on IF gain = higl -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz	
Noise density in IF (charact The noise level in the IF will c worst frequency within the IF Center frequency 400 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 13.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz	terized at center of RF b change for frequencies av bandwidth. IF gain = low -146 dBm/Hz -151 dBm/Hz -151 dBm/Hz -146 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz	A mean of the senter of the se	f the IF. The IF gr N/A -155 -152 -152 -152 -145	ain = low IF gain = high 6 dBm/Hz -158 dBm/Hz 6 dBm/Hz -157 dBm/Hz 2 dBm/Hz -153 dBm/Hz	3b. IF gain = low -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz	LNA on IF gain = higl -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz	
Noise density in IF (charact The noise level in the IF will c worst frequency within the IF Center frequency 400 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 13.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz	terized at center of RF b change for frequencies av bandwidth. IF gain = low -146 dBm/Hz -151 dBm/Hz -151 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz	Vay from the center of Ba. MPB IF gain = high -145 dBm/Hz -153 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz	f the IF. The IF gr N/A -155 -155 -155 -155 -145 -145	4a. FBP 4a. FBP ain = low IF gain = high N/A 5 dBm/Hz -158 dBm/Hz 5 dBm/Hz -157 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz	3b. IF gain = low -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz	LNA on IF gain = higl -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	
 > 26.5 GHz to 50 GHz Noise density in IF (charact The noise level in the IF will c worst frequency within the IF Center frequency 400 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 3.3 to 8.6 GHz > 3.3 to 8.6 GHz > 3.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses (prese 	terized at center of RF b change for frequencies av bandwidth. IF gain = low -146 dBm/Hz -151 dBm/Hz -151 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz	A provide the center of the ce	f the IF. The IF gr N/A -155 -155 -155 -155 -145 -145	He is a part of the total noise is nominated at a. FBP ain = low IF gain = high N/A N/A 5 dBm/Hz -158 dBm/Hz 5 dBm/Hz -157 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -154 dBm/Hz 4 dBm/Hz -144 dBm/Hz	3b. IF gain = low -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	LNA on IF gain = higl -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz	
Noise density in IF (charact The noise level in the IF will c worst frequency within the IF Center frequency 400 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 3.3 to 8.6 GHz > 3.3 to 26.5 GHz > 13.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 50 to 55 GHz Spurious responses (prese	terized at center of RF b change for frequencies av bandwidth. IF gain = low -146 dBm/Hz -151 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz lector enabled for frequ	A way from the center of a. MPB IF gain = high -145 dBm/Hz -153 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz encies > 3.6 GHz)	f the IF. The IF gr N/A -155 -155 -155 -155 -145 -145	He is a part of the total noise is nominated at a. FBP ain = low IF gain = high N/A N/A 5 dBm/Hz -158 dBm/Hz 5 dBm/Hz -157 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -154 dBm/Hz 4 dBm/Hz -144 dBm/Hz	3b. IF gain = low -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	LNA on IF gain = higl -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	
Noise density in IF (charact The noise level in the IF will c worst frequency within the IF Center frequency 400 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 8.6 to 13.3 GHz > 13.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses (prese Residual responses (input for the second se	terized at center of RF b change for frequencies av bandwidth. IF gain = low -146 dBm/Hz -151 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz lector enabled for frequ	A way from the center of a. MPB IF gain = high -145 dBm/Hz -153 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz encies > 3.6 GHz)	f the IF. The IF gr N/A -155 -155 -155 -155 -145 -145	He is a part of the total noise is nominated at a. FBP ain = low IF gain = high N/A N/A 5 dBm/Hz -158 dBm/Hz 5 dBm/Hz -157 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -154 dBm/Hz 4 dBm/Hz -144 dBm/Hz	3b. IF gain = low -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	LNA on IF gain = higl -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	
Noise density in IF (charact The noise level in the IF will c worst frequency within the IF Center frequency 400 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 8.6 to 13.3 GHz > 13.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses (prese Residual responses (input to Center frequency	terized at center of RF b change for frequencies av bandwidth. IF gain = low -146 dBm/Hz -151 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz lector enabled for frequ	vay from the center of a. MPB IF gain = high -145 dBm/Hz -153 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz -129 dBm/Hz encies > 3.6 GHz) ation)	f the IF. The IF gr N/A -155 -155 -155 -155 -145 -145	He is a part of the total noise is nominated at a. FBP ain = low IF gain = high N/A N/A 5 dBm/Hz -158 dBm/Hz 5 dBm/Hz -157 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -154 dBm/Hz 4 dBm/Hz -144 dBm/Hz	3b. IF gain = low -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	LNA on IF gain = higl -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	
Noise density in IF (charact The noise level in the IF will c worst frequency within the IF Center frequency 400 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 3.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses (prese Residual responses (input for the second sec	terized at center of RF b shange for frequencies av bandwidth. IF gain = low -146 dBm/Hz -151 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz lector enabled for frequ	vay from the center of a. MPB IF gain = high -145 dBm/Hz -153 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz -129 dBm/Hz encies > 3.6 GHz) ation)	f the IF. The IF gr N/A -155 -155 -155 -155 -145 -145	He is a part of the total noise is nominated at a. FBP ain = low IF gain = high N/A N/A 5 dBm/Hz -158 dBm/Hz 5 dBm/Hz -157 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -154 dBm/Hz 4 dBm/Hz -144 dBm/Hz	3b. IF gain = low -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	LNA on IF gain = higl -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	
Noise density in IF (charact The noise level in the IF will o worst frequency within the IF Center frequency 400 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 3.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 50 to 53 GHz Spurious responses (prese Residual responses (input f Center frequency 65 MHz to 50 GHz Image responses	terized at center of RF b shange for frequencies av bandwidth. IF gain = low -146 dBm/Hz -151 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz lector enabled for frequ	vay from the center of Ba. MPB IF gain = high -145 dBm/Hz -153 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz encies > 3.6 GHz) ation)	f the IF. The IF gr N/A -155 -155 -155 -155 -145 -145	He is a part of the total noise is nominated at a. FBP ain = low IF gain = high N/A N/A 5 dBm/Hz -158 dBm/Hz 5 dBm/Hz -157 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -154 dBm/Hz 4 dBm/Hz -144 dBm/Hz	3b. IF gain = low -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	LNA on IF gain = higi -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	
Noise density in IF (charact The noise level in the IF will o worst frequency within the IF Center frequency 400 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 13.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses (prese Residual responses (input f Center frequency 65 MHz to 50 GHz Image responses Tuned frequency (f)	terized at center of RF b change for frequencies av bandwidth. IF gain = low -146 dBm/Hz -151 dBm/Hz -151 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz lector enabled for frequent terminated, 0 dB attenu -100 dBm (nomi Excitation frequent f + 2 * 1st IF MHz	vay from the center of Ba. MPB IF gain = high -145 dBm/Hz -153 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz -129 dBm/Hz encies > 3.6 GHz) ation) ency	f the IF. The IF gr N/A -155 -155 -155 -155 -145 -145	He is a part of the total noise is nominated at a. FBP ain = low IF gain = high N/A N/A 5 dBm/Hz -158 dBm/Hz 5 dBm/Hz -157 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -154 dBm/Hz 4 dBm/Hz -144 dBm/Hz	3b. IF gain = low -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	LNA on IF gain = higl -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	
Noise density in IF (charact The noise level in the IF will c worst frequency within the IF Center frequency 400 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 13.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz	terized at center of RF b change for frequencies av bandwidth. IF gain = low -146 dBm/Hz -151 dBm/Hz -151 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz lector enabled for frequent terminated, 0 dB attenu -100 dBm (nomi	vay from the center of 3a. MPB IF gain = high -145 dBm/Hz -153 dBm/Hz -151 dBm/Hz -146 dBm/Hz -143 dBm/Hz -133 dBm/Hz -129 dBm/Hz encies > 3.6 GHz) ation) ency z -12	f the IF. The IF gr N/A -155 -155 -155 -155 -145 -145	He is a part of the total noise is nominated at a. FBP ain = low IF gain = high N/A N/A 5 dBm/Hz -158 dBm/Hz 5 dBm/Hz -157 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -153 dBm/Hz 2 dBm/Hz -154 dBm/Hz 4 dBm/Hz -144 dBm/Hz	3b. IF gain = low -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	LNA on IF gain = higl -160 dBm/Hz -160 dBm/Hz -159 dBm/Hz -154 dBm/Hz -152 dBm/Hz -144 dBm/Hz -142 dBm/Hz	

	3a. MPB	(10 dB attenuation)	3b. LNA on (0 dB attenuation)	3c. PA on (0 dB attenuation)	
Frequency	Full range	20 to 30 °C	Nominal	Nominal	
10 to 600 MHz	± 1.8 dB	± 1.5 dB	± 0.8 dB	± 0.7 dB	
600 MHz to 3.3 GHz	± 1.5 dB	± 1.2 dB	± 0.5 dB	± 0.5 dB	
> 3.3 to 8.6 GHz	± 1.2 dB	± 1.0 dB	± 0.3 dB	± 0.5 dB	
> 8.6 to 13.3 GHz	± 2.0 dB	± 1.5 dB	± 0.4 dB	± 0.5 dB	
> 13.3 to 17.1 GHz	± 2.0 dB	± 1.5 dB	± 0.5 dB	± 0.5 dB	
> 17.1 to 26.5 GHz	± 2.7 dB	± 2.2 dB	± 0.6 dB	± 0.6 dB	
> 26.5 to 34.5 GHz	± 3.2 dB	± 2.5 dB	± 0.9 dB	± 1.0 dB	
> 34.5 to 36.5 GHz	± 5.5 dB	± 3.0 dB			
> 36.5 to 45.0 GHz	± 4.5 dB	± 3.0 dB	± 1.3 dB	± 1.3 dB	
> 45 to 55 GHz	± 4.7 dB	± 3.2 dB			

Amplitude accuracy, absolute, full bypass path (FBP)

	4a. FBP	(10 dB attenuation)	4b. LNA on (0 dB attenuation)
Frequency	Full range	20 to 30 °C	Nominal
> 3.3 to 8.6 GHz	± 1.2 dB	± 1.0 dB	± 0.4 dB
> 8.6 to 13.3 GHz	± 2.0 dB	± 1.6 dB	± 0.4 dB
> 13.3 to 17.1 GHz	± 2.0 dB	± 1.6 dB	± 0.5 dB
> 17.1 to 26.5 GHz	± 2.7 dB	± 2.3 dB	± 0.6 dB
> 26.5 to 34.5 GHz	± 3.2 dB	± 2.5 dB	± 0.9 dB
> 34.5 to 36.5 GHz	± 5.5 dB	± 3.0 dB	
> 36.5 to 45.0 GHz	± 4.4 dB	± 3.0 dB	± 1.0 dB
> 45 to 55 GHz	± 4.8 dB	± 3.2 dB	

1 GHz Analysis Bandwidth (Option R10)

Specifications on this bandwidth apply with center frequencies of 700 MHz and higher. All specifications apply under the following settings unless otherwise specified: preselector bypassed, PA off, LNA off, IF gain = Auto, IF gain offset = 0 dB. IF frequency response and IF amplitude accuracy performance between 18 and 26.5 GHz for Type-N connectorized instruments is nominal.

Analysis bandwidth rai	nge		10 Hz to 1.0 GHz					
Tuning range 2 Hz to 55						(½*BW), by image fold Over-range tuning to 5	tuning range limited to < ing and LO feedthrough 5.5 GHz allowed, but rformance not specified.	
IF frequency			5490 MHz (1 st IF, cer 690 MHz (Final IF)	nter frequency ≤ 3				
ADC sample rate	ample rate 4.8 GSa/sec							
ADC resolution			14 bits					
Final data format			I & Q pairs, 32 bits each, 64 bits/Sa					
Capture memory			16 GB 32,000,001 sample pairs					
IQ Analyzer								
Length (IQ sample pai	rs)		4,294,967,296 samp	les with 32-bit dat	a packing			
Maximum capture time	e (time record le	ngth)	3.58 s at full 1.0 GHz BW with 32-bit data packing			Capture time increases linearly with decrease in bandwidth		
IF frequency respons	se (span ≤ 1 Gl	Hz), microwav	e preselector bypas	s path (MPB)				
	3a.	MPB (10 dB at	tenuation)	3b. LNA	on (0 dB attenuatio	on) 3c. PA or	n (0 dB attenuation)	
	Full range	20 to 30 °C	RMS (nominal)	Nominal	RMS (nomir	al) Nominal	RMS (nominal	
Center frequency			0.40.10	± 0.40 dB	0.10 dB	± 0.40 dB	0.13 dB	
	± 1.80 dB	± 1.60 dB	0.10 dB	± 0.10 ab				
600 MHz to 3.3 GHz	± 1.80 dB ± 1.50 dB	± 1.60 dB ± 1.35 dB	0.10 dB 0.10 dB	± 0.40 dB	0.10 dB	± 0.30 dB	0.10 dB	
Center frequency 600 MHz to 3.3 GHz > 3.3 to 8.4 GHz > 8.4 to 26.5 GHz					0.10 dB 0.15 dB	± 0.30 dB ± 0.40 dB	0.10 dB 0.10 dB	
600 MHz to 3.3 GHz > 3.3 to 8.4 GHz	± 1.50 dB	± 1.35 dB	0.10 dB	± 0.40 dB				
600 MHz to 3.3 GHz > 3.3 to 8.4 GHz > 8.4 to 26.5 GHz	± 1.50 dB ± 1.55 dB	± 1.35 dB ± 1.40 dB	0.10 dB 0.10 dB	± 0.40 dB ± 0.60 dB	0.15 dB	± 0.40 dB	0.10 dB	

± 1.00 dB (nominal) IF frequency response (span ≤ 1 GHz) full bypass path (FBP)

0.60 dB

	4a. FBP (10	dB attenuation)		4b. LNA on (0	dB attenuation)	
Center frequency	Full range	20 to 30 °C	RMS (nomi	nal)	Nominal		RMS (nominal
> 3.3 to 8.4 GHz	± 1.80 dB	± 1.70 dB	0.15 dB		± 0.55 dB		0.20 dB
> 8.4 to 26.5 GHz	± 1.80 dB	± 1.60 dB	0.10 dB		± 0.60 dB		0.20 dB
> 26.5 to 34.4 GHz	± 2.45 dB	± 2.30 dB	0.20 dB		± 0.70 dB		0.30 dB
> 34.4 to 48.55 GHz	± 3.20 dB	± 2.80 dB	0.40 dB		± 1.00 dB		0.40 dB
> 48.55 to 55 GHz	± 1.50 dB (no	ominal)	0.80 dB		± 1.50 dB		0.80 dB
IF phase linearity							
Center frequency	Spar	n (MHz)		Preselector		RMS (nominal)	
≥ 0.02 GHz, ≤ 3.3 GH	z ≤10	00 MHz		N/A		4.00°	
3.3 to 26.5 GHz	≤ 10	00 MHz		Off		1.25°	
26.5 to 50 GHz	≤ 10	00 MHz		Off		2.50°	
50 to 55 GHz	≤ 10	00 MHz		Off		3.00°	
IF dynamic range (no	ominal)						
SFDR (spurious-free d	lynamic range)	ADC related sp	urious)	–66 dBc		Signal at -27 dBFS, any	where in full IF width
IF residual responses	s (relative to fu	II scale, input t	erminated, IF	gain = high) (nominal)			
< 20 GHz				–90 dBFS			
20 to 40 GHz				80 dBFS			
> 40 GHz				–65 dBFS			
Full each (ADC align	!		NA	(/			

± 1.00 dB

0.50 dB

± 1.00 dB

0.50 dB

Full scale (ADC clipping); preselector bypassed, LNA off, PA off (nominal)

> 48.55 to 55 GHz
Full scale (ADC clipping level) is a rough estimate of the signal level at which ADC overload occurs. Actual clipping levels vary significantly; this is only a guide. Mixer level is RF input level less attenuation setting.

		Optic	n						
Center frequency	508, and		nd 555	Mix	Mixer level for IF gain = low		Mixer level for IF gain = high		
≤ 3.3 GHz	х	X	X	-10	–10 dBm		–10 dBm		
> 3.3 to 13.3 GHz	х			-8	dBm	-17	7 dBm		
> 3.3 10 13.3 GHZ		X	X	-10	–10 dBm		9 dBm		
> 13.3 to 26.5 GHz	X			-10	dBm	-17	7 dBm		
73.3 to 20.3 GHZ		x	x	-12	dBm	-19	9 dBm		
> 26.5 to 50 GHz		X	X		dBm		5 dBm		
> 50 to 55 GHz			X		dBm	- 6	6 dBm		
Effect of signal frequer	ncy ≠ CF			Up	to ±3.8 dB nominal				
Signal to noise ratio	(ratio of clipping le	vel to noise leve	I, log averaged	, 1 Hz RBW	, IF gain = Low) (nomi	nal)			
Center frequency									
≤ 3.6 GHz			143 d	В					
> 17.1 to 26.5 GHz				В					
> 26.5 to 50 GHz				В					
(nominal)					3FS (≤ 26.5 GHz) or –23		,, i v iii		
Center frequency				_					
< 3.3 GHz				-74 dBc					
> 3.3 to 20 GHz				-74 dBc					
> 20 to 26.5 GHz									
			-72 d						
> 26.5 GHz to 50 GHz			–69 d	Bc					
		nter of RF band a	–69 d	Bc	nuation)				
> 26.5 GHz to 50 GHz Noise density in IF (c	haracterized at cer		–69 d and center of IF	Bc , 0 dB atter	nuation) IF part of the total noise	e is nominally ±4	4.0 dB worse	at the	
> 26.5 GHz to 50 GHz Noise density in IF (c The noise level in the I	haracterized at cer F will change for fre		–69 d and center of IF	Bc , 0 dB atter	•	e is nominally ±4	4.0 dB worse	at the	
> 26.5 GHz to 50 GHz Noise density in IF (c The noise level in the I	haracterized at cer F will change for fre the IF bandwidth.		–69 d and center of IF	Bc , 0 dB atter the IF. The	•	e is nominally ±4	4.0 dB worse 3b. LN		
> 26.5 GHz to 50 GHz Noise density in IF (c The noise level in the I worst frequency within	haracterized at cer F will change for fre the IF bandwidth.	quencies away fro	-69 d and center of IF om the center of	Bc , 0 dB atter the IF. The	IF part of the total noise	e is nominally ±4	3b. LN		
> 26.5 GHz to 50 GHz Noise density in IF (c The noise level in the I worst frequency within Center frequency	haracterized at cer F will change for fre the IF bandwidth. 3	quencies away fro a. MPB	–69 d and center of IF om the center of h IF gai	Bc , 0 dB atter the IF. The 4	IF part of the total noise a. FBP		3b. LN/	A on	
> 26.5 GHz to 50 GHz Noise density in IF (c The noise level in the I worst frequency within Center frequency 700 MHz to 3.3 GHz	haracterized at cer F will change for fre the IF bandwidth. 3 IF gain = low	quencies away fro a. MPB IF gain = hig	–69 dl and center of IF om the center of h IF gai z N/A	Bc , 0 dB atter the IF. The 4	IF part of the total noise a. FBP IF gain = high	IF gain = lo	3b. LN/ w Iz	A on IF gain = high	
> 26.5 GHz to 50 GHz Noise density in IF (c The noise level in the I worst frequency within	haracterized at cer F will change for fre the IF bandwidth. 3 IF gain = Iow -145 dBm/Hz	quencies away fro a. MPB IF gain = hig –145 dBm/H:	-69 dl and center of IF form the center of h IF gai z N/A z -148 d	Bc , 0 dB atter the IF. The 4 n = low	IF part of the total noise a. FBP IF gain = high N/A	IF gain = lo -161 dBm/H	3b. LN/ w iz iz	A on IF gain = high –161 dBm/Hz	
 > 26.5 GHz to 50 GHz Noise density in IF (c The noise level in the I worst frequency within Center frequency 700 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz 	haracterized at cer F will change for fre the IF bandwidth. 3 IF gain = Iow -145 dBm/Hz -146 dBm/Hz	quencies away fro a. MPB IF gain = hig -145 dBm/H: -146 dBm/H:	-69 dl and center of IF form the center of h IF gai z N/A z -148 z -147 d	Bc , 0 dB atter the IF. The 4 n = low dBm/Hz	IF part of the total noise a. FBP IF gain = high N/A -155 dBm/Hz	IF gain = lor -161 dBm/H -158 dBm/H	3b. LN/ w lz lz lz	A on IF gain = high –161 dBm/Hz –158 dBm/Hz	
> 26.5 GHz to 50 GHz Noise density in IF (c The noise level in the I worst frequency within Center frequency 700 MHz to 3.3 GHz > 3.3 to 8.6 GHz	haracterized at cer F will change for fre the IF bandwidth. 3 IF gain = low -145 dBm/Hz -146 dBm/Hz -146 dBm/Hz	quencies away fro a. MPB IF gain = hig -145 dBm/H: -146 dBm/H: -146 dBm/H:	-69 dl and center of IF om the center of h IF gai z N/A z -148 z -147 z -149	Bc , 0 dB atter the IF. The 4 n = low dBm/Hz dBm/Hz	IF part of the total noise a. FBP IF gain = high N/A -155 dBm/Hz -155 dBm/Hz	IF gain = lo -161 dBm/H -158 dBm/H -158 dBm/H	3b. LN / w iz iz iz iz iz	A on IF gain = high -161 dBm/Hz -158 dBm/Hz -158 dBm/Hz	
 > 26.5 GHz to 50 GHz Noise density in IF (c The noise level in the I worst frequency within Center frequency 700 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 13.3 to 26.5 GHz 	haracterized at cer F will change for fre the IF bandwidth. 3 IF gain = low -145 dBm/Hz -146 dBm/Hz -146 dBm/Hz -144 dBm/Hz	quencies away fro a. MPB IF gain = hig -145 dBm/H: -146 dBm/H: -146 dBm/H: -144 dBm/H:	-69 dl and center of IF form the center of h IF gai z N/A z -148 dl z -149 dl z -	Bc , 0 dB atter the IF. The 4 n = low dBm/Hz dBm/Hz dBm/Hz	IF part of the total noise a. FBP IF gain = high N/A -155 dBm/Hz -155 dBm/Hz -152 dBm/Hz	IF gain = lo -161 dBm/H -158 dBm/H -158 dBm/H -153 dBm/H	3b. LN / w lz lz lz lz lz lz lz	A on IF gain = high –161 dBm/Hz –158 dBm/Hz –158 dBm/Hz –153 dBm/Hz	
 > 26.5 GHz to 50 GHz Noise density in IF (c) The noise level in the I worst frequency within Center frequency 700 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 13.3 to 26.5 GHz > 26.5 to 34 GHz 	haracterized at cer F will change for fre the IF bandwidth. 3 IF gain = low -145 dBm/Hz -146 dBm/Hz -146 dBm/Hz -144 dBm/Hz -143 dBm/Hz	quencies away fro a. MPB IF gain = hig -145 dBm/H: -146 dBm/H: -146 dBm/H: -144 dBm/H: -143 dBm/H:	-69 dl and center of IF form the center of h IF gai z N/A z -148 d z -149 z -149 d z -149 d z -145 d	Bc , 0 dB atter the IF. The 4 n = low dBm/Hz dBm/Hz dBm/Hz dBm/Hz	IF part of the total noise a. FBP IF gain = high N/A -155 dBm/Hz -155 dBm/Hz -152 dBm/Hz -152 dBm/Hz	IF gain = lo -161 dBm/H -158 dBm/H -158 dBm/H -153 dBm/H -152 dBm/H	3b. LN / w // lz // lz // lz // lz // lz // lz // lz // lz //	A on IF gain = high -161 dBm/Hz -158 dBm/Hz -158 dBm/Hz -153 dBm/Hz -152 dBm/Hz	
 > 26.5 GHz to 50 GHz Noise density in IF (c) The noise level in the I worst frequency within Center frequency 700 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 13.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz 	haracterized at cer F will change for fre the IF bandwidth. IF gain = low -145 dBm/Hz -146 dBm/Hz -146 dBm/Hz -144 dBm/Hz -143 dBm/Hz -132 dBm/Hz	quencies away fro a. MPB IF gain = hig -145 dBm/H: -146 dBm/H: -146 dBm/H: -144 dBm/H: -143 dBm/H: -132 dBm/H:	-69 dl and center of IF form the center of h IF gai z N/A z -148 z -149 z -149 z -149 z -149 z -145 z -145	Bc , 0 dB atter the IF. The 4 n = low dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz	IF part of the total noise a. FBP IF gain = high N/A -155 dBm/Hz -155 dBm/Hz -152 dBm/Hz -152 dBm/Hz -152 dBm/Hz -154 dBm/Hz	IF gain = lo -161 dBm/H -158 dBm/H -158 dBm/H -153 dBm/H -152 dBm/H -142 dBm/H	3b. LN w iz iz iz iz iz iz iz	A on IF gain = high -161 dBm/Hz -158 dBm/Hz -158 dBm/Hz -153 dBm/Hz -152 dBm/Hz -142 dBm/Hz	
 > 26.5 GHz to 50 GHz Noise density in IF (c) The noise level in the I worst frequency within Center frequency 700 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 3.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz 	haracterized at cer F will change for fre the IF bandwidth. IF gain = low -145 dBm/Hz -146 dBm/Hz -146 dBm/Hz -144 dBm/Hz -143 dBm/Hz -132 dBm/Hz -132 dBm/Hz -129 dBm/Hz	quencies away fr a. MPB IF gain = hig -145 dBm/H: -146 dBm/H: -146 dBm/H: -143 dBm/H: -132 dBm/H: -132 dBm/H: -132 dBm/H: -132 dBm/H:	-69 dl and center of IF form the center of h IF gai z -1480 z -1490 z -1490 z -1490 z -1450 z -1450 z -1410	Bc , 0 dB atter the IF. The 4 n = low dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz	IF part of the total noise a. FBP IF gain = high N/A -155 dBm/Hz -155 dBm/Hz -152 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz	IF gain = lo -161 dBm/H -158 dBm/H -158 dBm/H -153 dBm/H -152 dBm/H -142 dBm/H -142 dBm/H	3b. LN w iz iz iz iz iz iz iz	A on IF gain = high -161 dBm/Hz -158 dBm/Hz -158 dBm/Hz -153 dBm/Hz -152 dBm/Hz -142 dBm/Hz -142 dBm/Hz	
 > 26.5 GHz to 50 GHz Noise density in IF (c) The noise level in the I worst frequency within Center frequency 700 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 3.4 to 50 GHz > 3.4 to 50 GHz > 3.5 to 55 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses 	haracterized at cer F will change for fre the IF bandwidth. IF gain = Iow -145 dBm/Hz -146 dBm/Hz -146 dBm/Hz -143 dBm/Hz -143 dBm/Hz -132 dBm/Hz -132 dBm/Hz (preselector enable	quencies away from a. MPB IF gain = hig -145 dBm/H: -146 dBm/H: -146 dBm/H: -146 dBm/H: -143 dBm/H: -132 dBm/H: -132 dBm/H: -129 dBm/H:	-69 dl and center of IF form the center of h IF gai z -1480 z -1490 z -1490 z -1490 z -1450 z -1450 z -1410	Bc , 0 dB atter the IF. The 4 n = low dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz	IF part of the total noise a. FBP IF gain = high N/A -155 dBm/Hz -155 dBm/Hz -152 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz	IF gain = lo -161 dBm/H -158 dBm/H -158 dBm/H -153 dBm/H -152 dBm/H -142 dBm/H -142 dBm/H	3b. LN w iz iz iz iz iz iz iz	A on IF gain = high -161 dBm/Hz -158 dBm/Hz -158 dBm/Hz -153 dBm/Hz -152 dBm/Hz -142 dBm/Hz -142 dBm/Hz	
 > 26.5 GHz to 50 GHz Noise density in IF (c) The noise level in the I worst frequency within Center frequency 700 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 13.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses Residual Responses (i 	haracterized at cer F will change for fre the IF bandwidth. IF gain = Iow -145 dBm/Hz -146 dBm/Hz -146 dBm/Hz -143 dBm/Hz -143 dBm/Hz -132 dBm/Hz -132 dBm/Hz (preselector enable	quencies away from a. MPB IF gain = hig -145 dBm/H: -146 dBm/H: -146 dBm/H: -146 dBm/H: -143 dBm/H: -132 dBm/H: -132 dBm/H: -129 dBm/H:	-69 dl and center of IF form the center of h IF gai z -1480 z -1490 z -1490 z -1490 z -1450 z -1450 z -1410	Bc , 0 dB atter the IF. The 4 n = low dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz	IF part of the total noise a. FBP IF gain = high N/A -155 dBm/Hz -155 dBm/Hz -152 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz	IF gain = lo -161 dBm/H -158 dBm/H -158 dBm/H -153 dBm/H -152 dBm/H -142 dBm/H -142 dBm/H	3b. LN w iz iz iz iz iz iz iz	A on IF gain = high -161 dBm/Hz -158 dBm/Hz -158 dBm/Hz -153 dBm/Hz -152 dBm/Hz -142 dBm/Hz -142 dBm/Hz	
 > 26.5 GHz to 50 GHz Noise density in IF (c) The noise level in the I worst frequency within Center frequency 700 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 3.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses Residual Responses (in Center frequency 	haracterized at cer F will change for fre the IF bandwidth. IF gain = Iow -145 dBm/Hz -146 dBm/Hz -146 dBm/Hz -143 dBm/Hz -143 dBm/Hz -132 dBm/Hz -132 dBm/Hz (preselector enable	quencies away from a. MPB IF gain = hig -145 dBm/H: -146 dBm/H: -146 dBm/H: -146 dBm/H: -143 dBm/H: -132 dBm/H: -132 dBm/H: -129 dBm/H:	-69 dl and center of IF bom the center of h IF gai z N/A z -148 d z -149 d z -149 d z -149 d z -149 d z -145 d z -1	Bc , 0 dB atter the IF. The 4 n = low dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz	IF part of the total noise a. FBP IF gain = high N/A -155 dBm/Hz -155 dBm/Hz -152 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz -141 dBm/Hz	IF gain = lo -161 dBm/H -158 dBm/H -158 dBm/H -153 dBm/H -152 dBm/H -142 dBm/H -142 dBm/H	3b. LN w iz iz iz iz iz iz iz	A on IF gain = high -161 dBm/Hz -158 dBm/Hz -158 dBm/Hz -153 dBm/Hz -152 dBm/Hz -142 dBm/Hz -142 dBm/Hz	
 > 26.5 GHz to 50 GHz Noise density in IF (c) The noise level in the I worst frequency within Center frequency 700 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 3.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses Residual Responses (i) Center frequency 700 MHz to 50 GHz > 00 MHz to 50 GHz 	haracterized at cer F will change for fre the IF bandwidth. IF gain = Iow -145 dBm/Hz -146 dBm/Hz -146 dBm/Hz -143 dBm/Hz -143 dBm/Hz -132 dBm/Hz -132 dBm/Hz (preselector enable	quencies away from a. MPB IF gain = hig -145 dBm/H: -146 dBm/H: -146 dBm/H: -146 dBm/H: -143 dBm/H: -132 dBm/H: -132 dBm/H: -129 dBm/H:	-69 dl and center of IF bom the center of h IF gai z N/A z -148 d z -149 d z -149 d z -149 d z -149 d z -145 d z -1	Bc , 0 dB atter the IF. The 4 n = low dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz	IF part of the total noise a. FBP IF gain = high N/A -155 dBm/Hz -155 dBm/Hz -152 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz -141 dBm/Hz	IF gain = lo -161 dBm/H -158 dBm/H -158 dBm/H -153 dBm/H -152 dBm/H -142 dBm/H -142 dBm/H	3b. LN w iz iz iz iz iz iz iz	A on IF gain = high -161 dBm/Hz -158 dBm/Hz -158 dBm/Hz -153 dBm/Hz -152 dBm/Hz -142 dBm/Hz -142 dBm/Hz	
 > 26.5 GHz to 50 GHz Noise density in IF (c) The noise level in the I worst frequency within Center frequency 700 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 3.3 to 8.6 GHz > 3.4 to 50 GHz > 34 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses Residual Responses (in Center frequency 700 MHz to 50 GHz 100 MHz to 50 GHz 	haracterized at cer F will change for fre the IF bandwidth. IF gain = Iow -145 dBm/Hz -146 dBm/Hz -146 dBm/Hz -143 dBm/Hz -143 dBm/Hz -132 dBm/Hz -132 dBm/Hz (preselector enable	quencies away from a. MPB IF gain = hig -145 dBm/H: -146 dBm/H: -146 dBm/H: -146 dBm/H: -143 dBm/H: -132 dBm/H: -132 dBm/H: -129 dBm/H:	-69 dl and center of IF form the center of h IF gai z -148 d z -148 d z -149 d z -149 d z -149 d z -145 d z -145 d z -141 d s > 3.6 GHz)	Bc , 0 dB atter the IF. The 4 n = low dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz	IF part of the total noise a. FBP IF gain = high N/A -155 dBm/Hz -155 dBm/Hz -152 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz -141 dBm/Hz al)	IF gain = lo -161 dBm/H -158 dBm/H -158 dBm/H -153 dBm/H -152 dBm/H -142 dBm/H -142 dBm/H	3b. LN w iz iz iz iz iz iz iz	A on IF gain = high -161 dBm/Hz -158 dBm/Hz -158 dBm/Hz -153 dBm/Hz -152 dBm/Hz -142 dBm/Hz -142 dBm/Hz	
 > 26.5 GHz to 50 GHz Noise density in IF (c) The noise level in the I worst frequency within Center frequency 700 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 8.6 to 13.3 GHz > 3.3 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses Residual Responses (in Center frequency 700 MHz to 50 GHz Image responses Tuned frequency (f) 	haracterized at cer F will change for fre the IF bandwidth. IF gain = Iow -145 dBm/Hz -146 dBm/Hz -146 dBm/Hz -143 dBm/Hz -143 dBm/Hz -132 dBm/Hz -132 dBm/Hz (preselector enable	quencies away from a. MPB IF gain = hig -145 dBm/H: -146 dBm/H: -146 dBm/H: -146 dBm/H: -143 dBm/H: -132 dBm/H: -132 dBm/H: -129 dBm/H:	-69 dl and center of IF form the center of h IF gai z N/A z -148 d z -147 d z -149 d z -145 d z -145 d z -145 d z -141 d s > 3.6 GHz)	Bc , 0 dB atter the IF. The 4 n = low dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz	IF part of the total noise a. FBP IF gain = high N/A -155 dBm/Hz -155 dBm/Hz -152 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz -141 dBm/Hz al)	IF gain = lo -161 dBm/H -158 dBm/H -158 dBm/H -153 dBm/H -152 dBm/H -142 dBm/H -142 dBm/H	3b. LN w iz iz iz iz iz iz iz	A on IF gain = high -161 dBm/Hz -158 dBm/Hz -158 dBm/Hz -153 dBm/Hz -152 dBm/Hz -142 dBm/Hz -142 dBm/Hz	
 > 26.5 GHz to 50 GHz Noise density in IF (c) The noise level in the I worst frequency within Center frequency 700 MHz to 3.3 GHz > 3.3 to 8.6 GHz > 3.3 to 8.6 GHz > 3.4 to 50 GHz > 34 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses Residual Responses (in Center frequency 700 MHz to 50 GHz 100 MHz to 50 GHz 	haracterized at cer F will change for fre the IF bandwidth. IF gain = Iow -145 dBm/Hz -146 dBm/Hz -146 dBm/Hz -143 dBm/Hz -143 dBm/Hz -132 dBm/Hz -132 dBm/Hz (preselector enable	quencies away from a. MPB IF gain = hig -145 dBm/H: -146 dBm/H: -146 dBm/H: -146 dBm/H: -143 dBm/H: -132 dBm/H: -132 dBm/H: -129 dBm/H:	-69 dl and center of IF form the center of h IF gai z N/A z -148 d z -147 d z -149 d z -145 d z -145 d z -145 d z -141 d es > 3.6 GHz) Excita f + 2 *	Bc , 0 dB atter the IF. The 4 n = low dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz dBm/Hz	IF part of the total noise a. FBP IF gain = high N/A -155 dBm/Hz -155 dBm/Hz -152 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz al) ency	IF gain = lo -161 dBm/H -158 dBm/H -158 dBm/H -153 dBm/H -152 dBm/H -142 dBm/H -142 dBm/H	3b. LN w iz iz iz iz iz iz iz	A on IF gain = high -161 dBm/Hz -158 dBm/Hz -158 dBm/Hz -153 dBm/Hz -152 dBm/Hz -142 dBm/Hz -142 dBm/Hz	

Amplitude accuracy, absolute, microwave preselector bypass path (MPB)

	3a. MPB (10 dB attenuation)		3b. LNA on (0 dB attenuation)	3c. PA on (0 dB attenuation)	
Frequency	Full range	20 to 30 °C	Nominal	Nominal	
10 to 600 MHz	± 1.7 dB	± 1.4 dB	± 0.9 dB	± 0.8 dB	
600 MHz to 3.3 GHz	± 1.5 dB	± 1.2 dB	± 0.4 dB	± 0.4 dB	
> 3.3 to 8.6 GHz	± 1.3 dB	± 1.1 dB	± 0.4 dB	± 0.5 dB	
> 8.6 to 13.3 GHz	± 2.0 dB	± 1.6 dB	± 0.4 dB	± 0.5 dB	
> 13.3 to 17.1 GHz	± 2.0 dB	± 1.6 dB	± 0.5 dB	± 0.5 dB	
> 17.1 to 26.5 GHz	± 2.6 dB	± 2.2 dB	± 0.5 dB	± 0.5 dB	
> 26.5 to 34.5 GHz	± 3.2 dB	± 2.5 dB	± 0.9 dB	± 0.9 dB	
> 34.5 to 36.5 GHz	± 5.5 dB	± 3.0 dB			
> 36.5 to 45.0 GHz	± 4.5 dB	± 3.0 dB	± 1.2 dB	± 1.2 dB	
> 45 to 55 GHz	± 4.7 dB	± 3.2 dB			

Amplitude accuracy, absolute, full bypass path (FBP)

	4a. Fi	BP (10 dB attenuation)	4b. LNA on (0 dB attenuation)		
Frequency	Full range	20 to 30 °C	Nominal		
> 3.3 to 8.6 GHz	± 1.2 dB	± 1.0 dB	± 0.4 dB		
> 8.6 to 13.3 GHz	± 2.0 dB	± 1.7 dB	± 0.4 dB		
> 13.3 to 17.1 GHz	± 2.0 dB	± 1.7 dB	± 0.5 dB		
> 17.1 to 26.5 GHz	± 2.7 dB	± 2.4 dB	± 0.5 dB		
> 26.5 to 34.5 GHz	± 3.2 dB	± 2.6 dB	± 0.8 dB		
> 34.5 to 36.5 GHz	± 5.5 dB	± 3.0 dB			
> 36.5 to 45.0 GHz	± 4.7 dB	± 3.0 dB	± 1.0 dB		
> 45 to 55 GHz	± 5.0 dB	± 3.2 dB			

1.5 GHz Analysis Bandwidth (Option R15)

Specifications on this bandwidth apply with center frequencies of 950 MHz and higher. All specifications apply under the following settings unless otherwise specified: preselector bypassed, PA off, LNA off, IF gain = Auto, IF gain offset = 0 dB. IF frequency response and IF amplitude accuracy performance between 18 and 26.5 GHz for Type-N connectorized instruments is nominal.

1.5 GHz analysis ban Analysis bandwidth rai	•••		10 Hz to 1.5 G	47						
Tuning range			2 Hz to 55 GHz			In practice, low end of tuning range limited to < (½*BW), by image folding and LO feedthrough. Over-range tuning to 55.5 GHz allowed, but witho corrections, performance not specified.				
IF frequency			5750 MHz (1st 1200 MHz (Fir	,	= > 3 5 GHz)		corrections	, penomance no	n specified.	
ir liequency			950 MHz (Fina		,					
ADC sample rate			4.8 GSa/sec							
ADC resolution			14 bits							
Final data format			I & Q pairs, 32 64 bits/Sa	bits each	l,					
Capture memory			16 GB							
IQ Analyzer			32,000,001 san	mple pairs	S					
Length (IQ sample pai	rs)		3,355,443,186	samples	with 32-bit data packi	ng				
Maximum capture time (time record length)			1.79 s at full 1.8	5 GHz B\	N with 32-bit data pac	king	Capture tin bandwidth	ne increases linea	arly with decrease in	
IF frequency respons	se (span ≤ 1.5 G	Hz), microway	ve preselector b	ypass pa	ath (MPB)					
	3a	a. MPB (10 dB	attenuation)		3b. LNA on (0	dB atte	nuation) 3c. PA o		on (0 dB attenuation)	
Center frequency	Full range	20 to 30 °C	RMS (nomi	inal)	Nominal	RMS	(nominal)	Nominal	RMS (nominal)	
850 MHz to 3.5 GHz	± 3.10 dB	± 2.80 dB	0.15 dB		± 0.50 dB	0.15	dB	± 0.50 dB	0.17 dB	
> 3.5 to 7.9 GHz	± 1.45 dB	± 1.05 dB	0.10 dB		± 0.20 dB	0.10	dB	± 0.25 dB	0.10 dB	
> 7.9 to 26.5 GHz	± 1.65 dB	± 1.30 dB	0.15 dB		± 0.40 dB	0.15	dB	± 0.35 dB	0.10 dB	
> 26.5 to 34.4 GHz	± 2.35 dB	± 1.90 dB	0.15 dB		± 0.60 dB	0.20	dB	± 0.50 dB	0.15 dB	
> 34.4 to 48.05 GHz	± 3.20 dB	± 2.70 dB	0.30 dB		± 0.70 dB	0.30	dB	± 0.70 dB	0.30 dB	
> 48.05 to 50 GHz	± 1.50 dB (no	minal)	0.50 dB		± 1.00 dB	0.50	dB	± 1.00 dB	0.50 dB	
> 50 to 55 GHz	± 1.50 dB (no	minal)	0.50 dB		± 1.00 dB	0.50	dB	± 1.00 dB	0.60 dB	
IF frequency respons	se (span ≤ 1.5 G	Hz) full bypas	s path (FBP)							
		4a. FE	3P (10 dB attenu	uation)	tion) 4b. LNA on (0 dB attenu			tenuation)		
Center frequency	Full range		20 to 30 °C	;	RMS (nominal)	Nom	inal		RMS (nominal	
> 3.5 to 7.9 GHz	± 1.40 dB		± 1.05 dB		0.10 dB	± 0.2	25 dB		0.10 dB	
> 7.9 to 26.5 GHz	± 1.65 dB		± 1.30 dB		0.15 dB	± 0.4	l5 dB		0.15 dB	
> 26.5 to 34.4 GHz	± 2.65 dB		± 2.20 dB		0.30 dB	± 0.8	35 dB		0.30 dB	
> 34.4 to 48.05 GHz	± 3.65 dB		± 3.10 dB		0.40 dB	± 1.00 dB			0.40 dB	
> 48.05 to 55 GHz	± 1.90 dB (no	minal)			0.70 dB	± 1.5	50 dB		0.60 dB	
IF phase linearity										
Center frequency		an (MHz)		Preselector			RMS (nominal)			
≥ 0.02 GHz, ≤ 3.5 GH	z ≤1	500 MHz		N/A			2.00°			
IF dynamic range (IF	gain = high) (no	ominal)								
SFDR (spurious-free d	ynamic range) (ADC related sp	urious)	–60 dE	Вс		Signal a	–22 dBFS, anyv	where in full IF width	
IF residual responses	s (relative to ful	I scale, input t	erminated, IF ga	ain = hig	h) (nominal)					
< 3.5 GHz				-100 c	,, ,					
≥ 3.5 GHz to 34.5 GH;	Z			-85 dE						
34.5 GHz to 50 GHz				-65 dE						

Full scale (ADC clipping); preselector bypassed, LNA off, PA off (nominal)

Full scale (ADC clipping level) is a rough estimate of the signal level at which ADC overload occurs. Actual clipping levels vary significantly; this is only a guide. Mixer level is RF input level less attenuation setting.

		Option			Mixer level for IF gain = high	
Center frequency	508, 513 and 526	544 and 550	555	Mixer level for IF gain = low		
≤ 3.3 GHz	X	X	х	–12 dBm	–12 dBm	
	X			–8 dBm	–18 dBm	
> 3.3 to 26.5 GHz		х	х	–10 dBm	–20 dBm	
> 26.5 to 50 GHz		х	х	–10 dBm	–16 dBm	
> 50 to 55 GHz			х	– 8 dBm	– 8 dBm	
Effect of signal frequency ≠ CF				Up to ±5.5 dB nominal		
Signal to noise ratio (ratio of cl	ipping level to noise	level, log averaged	, 1 Hz RBW,	IF gain = Low) (nominal)		
Center frequency						
≤ 3.6 GHz	143 dB					
> 17.1 to 26.5 GHz	141 dB					
> 26.5 to 50 GHz	135 dB					
TOI						
(3rd-order intermodulation dist separation) (nominal)	ortion in the IF, 2 ton	es of equal level @	-19 dBFS (≤	≦ 26.5 GHz) or –15 dBFS (>26.5 GH	z to 50 GHz), 10 MHz tone	
Center frequency						
< 3.5 GHz	–75 dBc					
> 3.5 to 20 GHz	–75 dBc					

Naiaa danaity in IE	(characterized at center of RF band and center of IF. 0 dB attenuation)	
	(characterized at center of RF pand and center of IF. 0 up attenuation)	

-70 dBc

-69 dBc

The noise level in the IF will change for frequencies away from the center of the IF. The IF part of the total noise is nominally ±2.0 dB worse at the worst frequency within the IF bandwidth.

Center frequency	3a. MPB		3b. I	LNA on	4a. FBP		
	IF gain = low	IF gain = high	IF gain = low	IF gain = high	IF gain = low	IF gain = high	
950 MHz to 3.5 GHz	–145 dBm/Hz	–145 dBm/Hz	–160 dBm/Hz	–160 dBm/Hz	N/A	N/A	
> 3.5 to 8.9 GHz	–150 dBm/Hz	–153 dBm/Hz	–160 dBm/Hz	–159 dBm/Hz	–153 dBm/Hz	–158 dBm/Hz	
> 8.9 to 26.5 GHz	–147 dBm/Hz	–147 dBm/Hz	–155 dBm/Hz	–154 dBm/Hz	–152 dBm/Hz	–153 dBm/Hz	
> 26.5 to 34 GHz	–143 dBm/Hz	–144 dBm/Hz	–154 dBm/Hz	–154 dBm/Hz	–152 dBm/Hz	–153 dBm/Hz	
> 34 to 50 GHz	–133 dBm/Hz	–133 dBm/Hz	–145 dBm/Hz	–145 dBm/Hz	–145 dBm/Hz	–145 dBm/Hz	
> 50 to 53 GHz	-133 dBm/Hz	-133 dBm/Hz	-141 dBm/Hz	-141 dBm/Hz	-145 dBm/Hz	-145 dBm/Hz	
> 53 to 55 GHz	-129 dBm/Hz	-129 dBm/Hz	-139 dBm/Hz	-139 dBm/Hz	-142 dBm/Hz	-142 dBm/Hz	

Spurious responses	(preselector enabled for frequencies	> 3.6 GHz)
--------------------	--------------------------------------	------------

Residual responses (input terminated, 0 dB attenuation)			
Center frequency			
< 3.5 GHz	-100 dBm (nominal)		
3.5 to 50 GHz	–90 dBm (nominal)		
Image responses			
Tuned frequency (f)	Excitation frequency		
10 MHz to 3.3 GHz	f + 2 * 1st IF MHz		
	f + 2 * Final IF MHz		
> 3.3 to 50.0 GHz	f + 2 * Final IF MHz		

> 20 to 26.5 GHz

> 26.5 GHz to 50 GHz

Amplitude accuracy, absolute, microwave preselector bypass path (MPB)

± 4.6 dB

± 4.8 dB

	3a. MP	B (10 dB attenuation)	3b. LNA on (0 dB attenuation)	3c. PA on (0 dB attenuation Nominal		
Frequency	Full range	20 to 30 °C	Nominal			
10 to 600 MHz	± 1.8 dB	± 1.5 dB	± 0.9 dB	± 0.8 dB		
600 MHz to 3.5 GHz	± 1.4 dB	± 1.1 dB	± 0.4 dB	± 0.4 dB		
> 3.5 to 7.9 GHz	± 1.4 dB	± 1.1 dB	± 0.3 dB	± 0.3 dB		
> 7.9 to 12.8 GHz	± 2.0 dB	± 1.5 dB	± 0.3 dB	± 0.3 dB		
> 12.8 to 17.1 GHz	± 2.0 dB	± 1.5 dB	± 0.5 dB	± 0.5 dB		
> 17.1 to 26.5 GHz	± 2.5 dB	± 2.2 dB	± 0.5 dB	± 0.6 dB		
> 26.5 to 34.5 GHz	± 3.1 dB	± 2.4 dB	± 0.8 dB	± 0.9 dB		
> 34.5 to 36.5 GHz	± 5.5 dB	± 3.1 dB				
> 36.5 to 45.0 GHz	± 4.7 dB	± 3.1 dB	± 1.1 dB	± 1.1 dB		
> 45 to 55 GHz	± 4.7 dB	± 3.3 dB				
Amplitude accuracy, absol	ute, full bypass path (FBP)					
	4a. FB	P (10 dB attenuation)	4b. LNA on (0 dB attenuation)			
Frequency	Full range	20 to 30 °C	Nominal			
> 3.5 to 7.9 GHz	± 1.2 dB	± 1.0 dB	± 0.4 dB			
> 7.9 to 12.8 GHz	± 2.0 dB	± 1.7 dB	± 0.4 dB			
> 12.8 to 17.1 GHz	± 2.0 dB	± 1.7 dB	± 0.6 dB			
> 17.1 to 26.5 GHz	± 2.7 dB	± 2.5 dB	± 0.6 dB			
> 26.5 to 34.5 GHz	± 3.2 dB	± 2.6 dB	± 1.0 dB			
> 34.5 to 36.5 GHz	± 5.5 dB	± 3.1 dB				

± 1.3 dB

± 3.1 dB

± 3.3 dB

> 36.5 to 45.0 GHz

> 45 to 55 GHz

2 GHz Analysis Bandwidth (Option R20)

Specifications on this bandwidth apply with center frequencies of 950 MHz and higher. All specifications apply under the following settings unless otherwise specified: preselector bypassed, PA off, LNA off, IF gain = Auto, IF gain offset = 0 dB. IF frequency response and IF amplitude accuracy performance between 18 and 26.5 GHz for Type-N connectorized instruments is nominal.

2.0 GHz analysis bandwidth (Option I	R20)	
Analysis bandwidth range	10 Hz to 2.0 GHz	
Tuning range	3.5 to 55 GHz	In practice, low end of tuning range limited to < (½*BW), by image folding and LO feedthrough. Over-range tuning to 55.5 GHz allowed, but without corrections, performance not specified
IF frequency	1200 MHz (center)	
ADC sample rate	4.8 GSa/sec	
ADC resolution	14 bits	
Final data format	I & Q pairs, 32 bits each, 64 bits/Sa	
Capture memory	16 GB	
IQ Analyzer	32,000,001 sample pairs	
Length (IQ sample pairs)	4,294,967,280 samples with 32-bit data packing	
Capture time (time record length)	1.79 s at full 2.0 GHz BW with 32-bit data packing	Capture time increases linearly with decrease in bandwidth

IF frequency response (span ≤ 2 GHz), microwave preselector bypass path (MPB)

Center frequency	3a	3a. MPB (10 dB attenuation)			3b. LNA on (0 dB attenuation)		3c. PA on (0 dB attenuation)	
	Full range	20 to 30 °C	RMS (nominal)	Nominal	RMS (nominal)	Nominal	RMS (nominal)	
> 3.5 to 7.9 GHz	± 1.45 dB	± 1.05 dB	0.10 dB	± 0.20 dB	0.10 dB	± 0.25 dB	0.10 dB	
> 7.9 to 26.5 GHz	± 1.65 dB	± 1.30 dB	0.15 dB	± 0.40 dB	0.15 dB	± 0.35 dB	0.10 dB	
> 26.5 to 34.4 GHz	± 2.35 dB	± 1.90 dB	0.15 dB	± 0.60 dB	0.20 dB	± 0.50 dB	0.15 dB	
> 34.4 to 48.05 GHz	± 3.20 dB	± 2.70 dB	0.30 dB	± 0.70 dB	0.30 dB	± 0.70 dB	0.30 dB	
> 48.05 to 50 GHz	± 1.50 dB (nor	± 1.50 dB (nominal)		± 1.00 dB	0.50 dB	± 1.00 dB	0.50 dB	
> 50 to 55 GHz	± 1.50 dB (nor	ninal)	0.50 dB	± 1.00 dB	0.50 dB	± 1.00 dB	0.60 dB	

IF frequency response (span ≤ 2 GHz) full bypass path (FBP)

	4a. FBP (10 d	B attenuation)		4b. LNA on (0 dB attenuation)			
Center frequency	Full range	Full range 20 to 30 °C		RMS (nominal)	Nominal	RMS (nominal	
> 3.5 to 7.9 GHz	± 1.40 dB	± 1.05 dE	3	0.10 dB	± 0.25 dB	0.10 dB	
> 7.9 to 26.5 GHz	± 1.65 dB	± 1.30 dE	3	0.15 dB	± 0.45 dB	0.15 dB	
> 26.5 to 34.4 GHz	± 2.65 dB	± 2.20 dE	3	0.30 dB	± 0.85 dB	0.30 dB	
> 34.4 to 48.05 GHz	± 3.65 dB	± 3.10 dE	3	0.40 dB	± 1.00 dB	0.40 dB	
> 48.05 to 55 GHz	± 1.90 dB (nominal)			0.70 dB	± 1.50 dB	0.60 dB	
IF phase linearity							
Center frequency	Span (MHz)		Preselector	RMS (nominal)	(nominal)		
3.5 to 26.5 GHz	≤ 2000 MHz		Off	1.00°	1.00°		
26.5 to 50 GHz	≤ 2000 MHz		Off	2.50°	;0°		
50 to 55 GHz	≤ 2000 MHz		Off	3.00°			
IF dynamic range (nominal)							
SFDR (spurious-free dynamic range) (ADC related spurious)	–65 dBc			Signal at –22 dBF	S, anywhere in full	IF width	
IF residual responses (relative to	o full scale, input termin	ated) (nominal)					
3.5 to 34.5 GHz			–85 dBFS				
34.5 to 50 GHz			-65 dBFS				
Full scale (ADC clipping): presel	actor hypassed INA of	ff DA off (nomin	nal)				

Full scale (ADC clipping); preselector bypassed, LNA off, PA off (nominal)

Full scale (ADC clipping level) is a rough estimate of the signal level at which ADC overload occurs. Actual clipping levels vary significantly; this is only a guide.	
Mixer level is RF input level less attenuation setting.	

Center frequency		Option						
	508, 513 and 544 and 550 555 Mixer level for IF gain = low		Mixer level for IF gain = high					
	X		-8 0	lBm	–18 dBm			
> 3.3 to 26.5 GHz		X	x –10	dBm	–20 dBm			
> 26.5 to 50 GHz		Х	x –10	dBm	–16 dBm			
> 50 to 55 GHz			x – 8	dBm	–8 dBm			
Effect of signal frequency	≠ CF		Up	to ±5.5 dB nominal				
Signal to noise ratio (rat	io of clipping level to noi	se level, log averag	jed, 1 Hz RBW, IF	gain low) (nominal)				
Center frequency								
≤ 3.6 GHz			143 dB					
> 17.1 to 26.5 GHz			141 dB					
> 26.5 to 50 GHz			135 dB					
separation)		r, z tones of equal	ievei (jj. 19 uBFS	(≤ 26.5 GHz) or –15 dBFS	1~20.3 GHZ 10 50 G	nz, io winz (one		
Center frequency								
3.5 to 20 GHz			–75 dBc					
20 to 26.5 GHz				-70 dBc				
26.5 to 50 GHz			-69 dBc					
Noise density in IF (char			f IF, 0 dB attenua					
Noise density in IF (char The noise level in the IF w	ill change for frequencies		f IF, 0 dB attenua	tion) part of the total noise is nom	inally ±2.0 dB worse	e at the		
Noise density in IF (char The noise level in the IF w	ill change for frequencies a IF bandwidth.		f IF, 0 dB attenua		-	e at the a. FBP		
Noise density in IF (char The noise level in the IF w worst frequency within the	ill change for frequencies a IF bandwidth.	away from the cente	f IF, 0 dB attenua	part of the total noise is nom 3b. LNA on	-	a. FBP		
Noise density in IF (char The noise level in the IF w worst frequency within the Center frequency	ill change for frequencies a IF bandwidth. 3a	away from the cente	f IF, 0 dB attenua r of the IF. The IF	3b. LNA on IF gain = high	4	a. FBP		
Noise density in IF (char The noise level in the IF w worst frequency within the Center frequency > 3.5 to 8.9 GHz	ill change for frequencies a IF bandwidth. 3a. IF gain = low	away from the cente . MPB IF gain = high	f IF, 0 dB attenua r of the IF. The IF IF gain = Iow	3b. LNA on IF gain = high -159 dBm/Hz	4 IF gain = low	a. FBP IF gain = high		
Noise density in IF (char The noise level in the IF w worst frequency within the Center frequency > 3.5 to 8.9 GHz > 8.9 to 26.5 GHz	ill change for frequencies a IF bandwidth. 3a. IF gain = low -150 dBm/Hz	way from the cente MPB IF gain = high -153 dBm/Hz	f IF, 0 dB attenua r of the IF. The IF IF gain = Iow -160 dBm/Hz	3b. LNA on IF gain = high -159 dBm/Hz -154 dBm/Hz	4 IF gain = low -153 dBm/Hz	a. FBP IF gain = high -158 dBm/Hz		
Noise density in IF (char The noise level in the IF w worst frequency within the Center frequency > 3.5 to 8.9 GHz > 8.9 to 26.5 GHz > 26.5 to 34 GHz	ill change for frequencies a IF bandwidth. 3a IF gain = low -150 dBm/Hz -147 dBm/Hz	Away from the cente MPB IF gain = high -153 dBm/Hz -147 dBm/Hz	f IF, 0 dB attenua r of the IF. The IF IF gain = Iow -160 dBm/Hz -155 dBm/Hz	3b. LNA on IF gain = high -159 dBm/Hz -154 dBm/Hz -154 dBm/Hz	4 IF gain = low -153 dBm/Hz -152 dBm/Hz	a. FBP IF gain = high -158 dBm/Hz -153 dBm/Hz		
Noise density in IF (char The noise level in the IF w worst frequency within the Center frequency > 3.5 to 8.9 GHz > 8.9 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz	ill change for frequencies a IF bandwidth. 3a. IF gain = low -150 dBm/Hz -147 dBm/Hz -143 dBm/Hz	Away from the cente MPB IF gain = high -153 dBm/Hz -147 dBm/Hz -144 dBm/Hz	f IF, 0 dB attenua r of the IF. The IF IF gain = Iow -160 dBm/Hz -155 dBm/Hz -154 dBm/Hz	3b. LNA on IF gain = high -159 dBm/Hz -154 dBm/Hz -154 dBm/Hz -154 dBm/Hz -145 dBm/Hz	4 IF gain = low -153 dBm/Hz -152 dBm/Hz -152 dBm/Hz	a. FBP IF gain = high -158 dBm/Hz -153 dBm/Hz -153 dBm/Hz		
Noise density in IF (char The noise level in the IF w worst frequency within the Center frequency > 3.5 to 8.9 GHz > 8.9 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz	ill change for frequencies a IF bandwidth. 3a. IF gain = low -150 dBm/Hz -147 dBm/Hz -143 dBm/Hz -133 dBm/Hz	Away from the cente IF gain = high -153 dBm/Hz -147 dBm/Hz -144 dBm/Hz -133 dBm/Hz	f IF, 0 dB attenua r of the IF. The IF IF gain = Iow -160 dBm/Hz -155 dBm/Hz -154 dBm/Hz -145 dBm/Hz	3b. LNA on IF gain = high -159 dBm/Hz -154 dBm/Hz -154 dBm/Hz -154 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz	4 IF gain = low -153 dBm/Hz -152 dBm/Hz -152 dBm/Hz -152 dBm/Hz	a. FBP IF gain = high -158 dBm/Hz -153 dBm/Hz -153 dBm/Hz -145 dBm/Hz		
Noise density in IF (char The noise level in the IF w worst frequency within the Center frequency > 3.5 to 8.9 GHz > 8.9 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz	ill change for frequencies a IF bandwidth. 3a. IF gain = low -150 dBm/Hz -147 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz	IF gain = high -153 dBm/Hz -147 dBm/Hz -133 dBm/Hz	f IF, 0 dB attenua r of the IF. The IF IF gain = Iow -160 dBm/Hz -155 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz -139 dBm/Hz	3b. LNA on IF gain = high -159 dBm/Hz -154 dBm/Hz -154 dBm/Hz -154 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz	4 IF gain = low -153 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz	a. FBP IF gain = high -158 dBm/Hz -153 dBm/Hz -153 dBm/Hz -145 dBm/Hz -145 dBm/Hz		
Noise density in IF (char The noise level in the IF w worst frequency within the Center frequency > 3.5 to 8.9 GHz > 8.9 to 26.5 GHz > 26.5 to 34 GHz	ill change for frequencies a IF bandwidth. 3a IF gain = low -150 dBm/Hz -147 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz selector enabled for free	IF gain = high -153 dBm/Hz -147 dBm/Hz -133 dBm/Hz -129 dBm/Hz quencies > 3.6 GHz	f IF, 0 dB attenua r of the IF. The IF IF gain = Iow -160 dBm/Hz -155 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz -139 dBm/Hz	3b. LNA on IF gain = high -159 dBm/Hz -154 dBm/Hz -154 dBm/Hz -154 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz	4 IF gain = low -153 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz	a. FBP IF gain = high -158 dBm/Hz -153 dBm/Hz -153 dBm/Hz -145 dBm/Hz -145 dBm/Hz		
Noise density in IF (char The noise level in the IF w worst frequency within the Center frequency > 3.5 to 8.9 GHz > 3.5 to 8.9 GHz > 3.5 to 3.6 GHz > 26.5 to 3.4 GHz > 3.4 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses (pre	ill change for frequencies a IF bandwidth. 3a IF gain = low -150 dBm/Hz -147 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz selector enabled for free	IF gain = high -153 dBm/Hz -147 dBm/Hz -133 dBm/Hz -129 dBm/Hz quencies > 3.6 GHz	f IF, 0 dB attenua r of the IF. The IF IF gain = Iow -160 dBm/Hz -155 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz -139 dBm/Hz	3b. LNA on IF gain = high -159 dBm/Hz -154 dBm/Hz -154 dBm/Hz -154 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz	4 IF gain = low -153 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz	a. FBP IF gain = high -158 dBm/Hz -153 dBm/Hz -153 dBm/Hz -145 dBm/Hz -145 dBm/Hz		
Noise density in IF (char The noise level in the IF w worst frequency within the Center frequency > 3.5 to 8.9 GHz > 8.9 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 50 to 53 GHz Spurious responses (pre Residual Responses (input	ill change for frequencies a IF bandwidth. 3a IF gain = low -150 dBm/Hz -147 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz selector enabled for free	IF gain = high -153 dBm/Hz -147 dBm/Hz -133 dBm/Hz -129 dBm/Hz quencies > 3.6 GHz	f IF, 0 dB attenua r of the IF. The IF IF gain = Iow -160 dBm/Hz -155 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz -139 dBm/Hz	apart of the total noise is nom 3b. LNA on IF gain = high -159 dBm/Hz -159 dBm/Hz -154 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz -139 dBm/Hz	4 IF gain = low -153 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz	a. FBP IF gain = high -158 dBm/Hz -153 dBm/Hz -153 dBm/Hz -145 dBm/Hz -145 dBm/Hz		
Noise density in IF (char The noise level in the IF w worst frequency within the Center frequency > 3.5 to 8.9 GHz > 8.9 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses (pre Residual Responses (inpu Center frequency	ill change for frequencies a IF bandwidth. 3a IF gain = low -150 dBm/Hz -147 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz selector enabled for free	IF gain = high -153 dBm/Hz -147 dBm/Hz -133 dBm/Hz -129 dBm/Hz quencies > 3.6 GHz	f IF, 0 dB attenua r of the IF. The IF IF gain = Iow -160 dBm/Hz -155 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz -139 dBm/Hz	apart of the total noise is nom 3b. LNA on IF gain = high -159 dBm/Hz -159 dBm/Hz -154 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz -139 dBm/Hz	4 IF gain = low -153 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz	a. FBP IF gain = high -158 dBm/Hz -153 dBm/Hz -153 dBm/Hz -145 dBm/Hz -145 dBm/Hz		
Noise density in IF (char The noise level in the IF w worst frequency within the Center frequency > 3.5 to 8.9 GHz > 8.9 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses (pre Residual Responses (inpu Center frequency 3.5 to-50 GHz Image responses	ill change for frequencies a IF bandwidth. 3a IF gain = low -150 dBm/Hz -147 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz selector enabled for free	IF gain = high -153 dBm/Hz -147 dBm/Hz -133 dBm/Hz -129 dBm/Hz quencies > 3.6 GHz	f IF, 0 dB attenua r of the IF. The IF IF gain = Iow -160 dBm/Hz -155 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz -139 dBm/Hz	3b. LNA on 3b. LNA on IF gain = high -159 dBm/Hz -154 dBm/Hz -154 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz -139 dBm/Hz -141 dBm/Hz -139 dBm/Hz -139 dBm/Hz	4 IF gain = low -153 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz	a. FBP IF gain = high -158 dBm/Hz -153 dBm/Hz -153 dBm/Hz -145 dBm/Hz -145 dBm/Hz		
Noise density in IF (char The noise level in the IF w worst frequency within the Center frequency > 3.5 to 8.9 GHz > 8.9 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses (pre Residual Responses (inpu Center frequency 3.5 to-50 GHz	ill change for frequencies a IF bandwidth. 3a IF gain = low -150 dBm/Hz -147 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz selector enabled for free	IF gain = high -153 dBm/Hz -147 dBm/Hz -133 dBm/Hz -129 dBm/Hz quencies > 3.6 GHz	f IF, 0 dB attenua r of the IF. The IF IF gain = Iow -160 dBm/Hz -155 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz -139 dBm/Hz	3b. LNA on 3b. LNA on IF gain = high -159 dBm/Hz -154 dBm/Hz -154 dBm/Hz -154 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz -139 dBm/Hz -141 dBm/Hz -139 dBm/Hz -139 dBm/Hz equency	4 IF gain = low -153 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz	a. FBP IF gain = high -158 dBm/Hz -153 dBm/Hz -153 dBm/Hz -145 dBm/Hz -145 dBm/Hz		
Noise density in IF (char The noise level in the IF w worst frequency within the Center frequency > 3.5 to 8.9 GHz > 8.9 to 26.5 GHz > 26.5 to 34 GHz > 34 to 50 GHz > 50 to 53 GHz > 53 to 55 GHz Spurious responses (inpu Center frequency 3.5 to-50 GHz Image responses Tuned frequency (f)	ill change for frequencies a IF bandwidth. 3a IF gain = low -150 dBm/Hz -147 dBm/Hz -143 dBm/Hz -133 dBm/Hz -133 dBm/Hz -129 dBm/Hz selector enabled for free	IF gain = high -153 dBm/Hz -147 dBm/Hz -133 dBm/Hz -129 dBm/Hz quencies > 3.6 GHz	f IF, 0 dB attenua r of the IF. The IF IF gain = low -160 dBm/Hz -155 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz -139 dBm/Hz -90 dBm (nor	3b. LNA on 3b. LNA on IF gain = high -159 dBm/Hz -154 dBm/Hz -154 dBm/Hz -154 dBm/Hz -145 dBm/Hz -141 dBm/Hz -139 dBm/Hz -141 dBm/Hz -139 dBm/Hz Hz -141 dBm/Hz -145 dBm/Hz -141 dBm/Hz -141 dBm/Hz -139 dBm/Hz NHz	4 IF gain = low -153 dBm/Hz -152 dBm/Hz -152 dBm/Hz -145 dBm/Hz -145 dBm/Hz	a. FBP IF gain = high -158 dBm/Hz -153 dBm/Hz -153 dBm/Hz -145 dBm/Hz -145 dBm/Hz		

Amplitude accuracy, absolute, microwave preselector bypass path (MPB)

	3a. MP	B (10 dB attenuation)	3b. LNA on (0 dB attenuation)	3c. PA on (0 dB attenuation) Nominal	
Frequency	Full range	20 to 30 °C	Nominal		
> 3.5 to 7.9 GHz	± 1.4 dB	± 1.1 dB	± 0.4 dB	± 0.4 dB	
> 7.9 to 12.8 GHz	± 2.0 dB	± 1.5 dB	± 0.4 dB	± 0.4 dB	
> 12.8 to 17.1 GHz	± 2.0 dB	± 1.5 dB	± 0.5 dB	± 0.5 dB	
> 17.1 to 26.5 GHz	± 2.6 dB	± 2.2 dB	± 0.6 dB	± 0.6 dB	
> 26.5 to 34.5 GHz	± 3.1 dB	± 2.4 dB	± 0.9 dB	± 0.9 dB	
> 34.5 to 36.5 GHz	± 5.5 dB	± 3.1 dB			
> 36.5 to 45.0 GHz	± 4.7 dB	± 3.1 dB	± 1.3 dB	± 1.3 dB	
> 45 to 55 GHz	± 4.7 dB	± 3.3 dB			
Amplitude accuracy, abso	lute, full bypass path (FBP)				
	4a. FB	P (10 dB attenuation)	4b. LNA on (0 dB attenuation)		
Frequency	Full range	20 to 30 °C	Nominal		
> 3.5 to 7.9 GHz	± 1.2 dB	± 1.0 dB	± 0.4 dB		

> 3.5 to 7.9 GHz	± 1.2 dB	± 1.0 dB	± 0.4 dB	
> 7.9 to 12.8 GHz	± 2.0 dB	± 1.7 dB	± 0.4 dB	
> 12.8 to 17.1 GHz	± 2.0 dB	± 1.7 dB	± 0.5 dB	
> 17.1 to 26.5 GHz	± 2.7 dB	± 2.5 dB	± 0.5 dB	
> 26.5 to 34.5 GHz	± 3.2 dB	± 2.6 dB	± 1.0 dB	
> 34.5 to 36.5 GHz	± 5.5 dB	± 3.1 dB		
> 36.5 to 45.0 GHz	± 4.7 dB	± 3.1 dB	± 1.5 dB	
> 45 to 55 GHz	± 5.0 dB	± 3.3 dB		

Real-time Spectrum Analyzer (RTSA)

		y Domain Characteristics						
A/D Converter Sample Rate	4.8 Gsa/s (2.4 GHz comp							
Supported detectors	Peak, Negative Peak, Sample, Average Voltage, Average Power (RMS)							
Number of display traces	Up to 6							
Available types of traces		Clear Write, Max Hold, Min Hold						
Window types		Hanning, Blackman-Harris, Rectangular, Flattop, Kaiser, Gaussian						
Resolutions bandwidths (RBW) (Default window type = Kaiser)	6 RBWs available for each window type for spans Approximate Span: RBW ratio for windows (Note: not applicable for spans from 240 to 255 MHz, 960 MHz to 1 GHz and from 1.9 to 2 GHz) Flattop = 7 to 212, Gaussian, Blackman-Harris = 13 to 417, Kaiser = 13 to 418, Hanning = 17 to 551							
Span	Min	RBW	Max	k RBW				
1 kHz	1.8	6 Hz	59	.4 Hz				
255 MHz	447	' kHz	14.3	3 MHz				
1 GHz	1.78	6 MHz	57.1	1 MHz				
2 GHz	3.57	' MHz	114	4 MHz				
	N9032RTAB	N9032RTBB	N9032RTEB	N9032RTFB				
Maximum real-time analysis bandwidth	Up to 1 GHz	Up to 1 GHz	Up to 2 GHz	Up to 2 GHz				
Minimum signal duration for 100% probability of intercept (POI) with full amplitude accuracy (with at least 50% overlap)	15.4 µs	227 ns	15.4 µs	227 ns				
Histogram	May 1 GH	z BW (span)	Max 2 GH	Iz BW (span)				
Maximum sample rate (Hz)	1.247259439e9	1.247259439e9	Max 2 GHz BW (span) 2.4e9 2.4e9					
(Gap free) FFT processing rate	1.24723343303	4,687,500		2.400				
FFT Length		4,007,500						
Supported triggers	Eroo Dun J	ine, External 1, External 2, E		A FMT ADC				
Number of markers				IC, TIMT, ADC				
	12							
	Normal, Delta, Noise, Band Power							
Supported markers	0	, ,	,	Kaiaar				
Supported markers Filter Type	Gaus	ssian, Flattop, Blackman-Har	ris, Rectangular, Hanning,	Kaiser				
Supported markers Filter Type Amplitude resolution		ssian, Flattop, Blackman-Han .01	ris, Rectangular, Hanning, dB					
Supported markers Filter Type Amplitude resolution Frequency points		ssian, Flattop, Blackman-Har .01 21	ris, Rectangular, Hanning, dB {	Kaiser 855				
Supported markers Filter Type Amplitude resolution Frequency points	8	ssian, Flattop, Blackman-Han .01	ris, Rectangular, Hanning, dB ss					
Supported markers Filter Type Amplitude resolution Frequency points RMS average Minimum acquisition time		ssian, Flattop, Blackman-Har .01 21	ris, Rectangular, Hanning, dB {					
Supported markers Filter Type Amplitude resolution Frequency points RMS average Minimum acquisition time Maximum acquisition time at widest	8.55 µs @ 170 MHz	ssian, Flattop, Blackman-Har .01 21 Ye	ris, Rectangular, Hanning, dB ss 8.55 µs @ 170 MHz	855				
Supported markers Filter Type Amplitude resolution Frequency points RMS average Minimum acquisition time Maximum acquisition time at widest	8.55 µs @ 170 MHz	ssian, Flattop, Blackman-Har .01 21 Ye	ris, Rectangular, Hanning, dB εs 8.55 μs @ 170 MHz 239.4 μs @ 2 GHz	855				
Supported markers Filter Type Amplitude resolution Frequency points RMS average Minimum acquisition time Maximum acquisition time at widest bandwidth	8.55 µs @ 170 MHz	ssian, Flattop, Blackman-Har .01 21 Υε 8.55 μs	ris, Rectangular, Hanning, dB ss 8.55 µs @ 170 MHz 239.4 µs @ 2 GHz sec	855				

Density View									
	N9032RTAB	N9032RTBB	N9032RTEB	N9032RTFB					
Probability range	0 to 100%								
Minimum span	1 kHz	1 kHz	1 kHz	1 kHz					
Maximum span	1 GHz	1 GHz	2 GHz	2 GHz					
Persistence duration		Infinite,	Finite						
Color palettes		Cool, Warm, Graysca	le, Radar, Fire, Frost						

Spectrogram View								
	N9032RTAB	N9032RTAB N9032RTBB N9032RTEB N9032RTFB						
Maximum number of acquisitions stored		250	,000					
Dynamic range covered by colors		200) dB					
Minimum slice time	8.55 µs @ 170 MHz 232.45 µs @ 1 GHz	8.55 µs	8.55 µs @ 170MHz 239.4 µs @ 2 GHz	8.55 µs				

Power vs. Time									
	N9032RTAB N9032RTBB N9032RTEB N9032RTEB								
Supported detectors	Peak, I	Peak, Negative Peak, Sample, Average Voltage, Average Power (RMS)							
Supported triggers	Free Rur	Free Run, Line, External 1, External 2, External 3, RF Burst, Periodic, FMT, Level (PvT) ≤ 255 MHz, ADC							
Number of markers		1	2						
Maximum time viewable	13.77 s	@ 1 GHz	7.27 s (0) 2 GHz					
Minimum time viewable	13.96 µ:	s @ 1 GHz	8.55 µs	@ 2 GHz					
Maximum IF bandwidth	1	GHz	20	ĞHz					
Minimum detectable signal duration	Note: Signal must have > end effects.	60 dB signal to mask (StM) t	o maintain 100% POI. Does	not include analog front-					
With option B2X		3.3	3 ns						
With option R10		802	2 ps						
With option R15		n/a	535	5 ps					
With option R20	n/a		418	3 ps					

	Frequency M	ask Trigger (FMT)					
	N9032RTAB	N9032RTEB	N9032RTFB				
Trigger views Density, Spectrogram, Normal							
Trigger setting resolution		0.0)1dB				
Trigger conditions	Enter	r, Leave, Inside, Outside, E	nter->Leave, Leave->Enter, T	QT			
Minimum time qualified trigger (TQT) duration	14.77 µs @ 1 GHz	14.77 μs @ 1 GHz 231 ns @ 1 GHz 14.96 μs @ 2 GHz					
Minimum detectable signal duration with >60 dB signal to mask (StM)	Note: Calculated with the le	ength 1024 Blackman-Harri	is window				
At 170 MHz	9.43 ns	9.43 ns	9.43 ns	9.43 ns			
With option B2X (255 MHz)	9.32 µs	6.67 ns	10.98 µs	6.67 ns			
With option R10 (1 GHz)	14.13 µs 1.60 ns		14.13 µs	1.60 ns			
With option R15 (1.5 GHz)	n/	а	14.34 µs	1.06 ns			
With option R20 (2 GHz)	n/	а	14.62 µs	1.25 ns			

Minimum signal duration (in $\mu s)$ for 100% probability of FMT triggering with various RBW

	Span									
N9032RTAB/ N9032RTEB	2 GHz	1.5 GHz	1 GHz	255 MHz	170 MHz	160 MHz	120 MHz	80 MHz	40 MHz	20 MHz
RBW1	0.64	0.76	1.04	3.62	5.13	5.45	7.26	10.89	21.79	43.58
RBW2	0.43	0.49	0.63	1.92	2.71	2.88	3.84	5.76	11.53	23.05
RBW3	0.32	0.35	0.42	1.06	1.50	1.599	2.13	3.197	6.39	12.79
RBW4	0.27	0.28	0.32	0.64	0.90	0.96	1.28	1.91	3.83	7.66
RBW5	0.24	0.25	0.27	0.424	0.599	0.64	0.85	1.27	2.55	5.09
RBW6	0.23	0.23	0.24	0.32	0.45	0.48	0.64	0.95	1.90	3.81
N9032RTBB/ N9032RTFB	2 GHz	1.5 GHz	1 GHz	255 MHz	170 MHz	160 MHz	120 MHz	80 MHz	40 MHz	20 MHz
RBW1	16.24	16.42	17.24	23.91	5.13	5.45	7.26	10.89	21.79	43.58
RBW2	15.82	15.87	16.42	20.49	2.71	2.88	3.84	5.76	11.53	23.05
RBW3	15.50	15.74	16.21	19.64	1.50	1.599	2.13	3.197	6.39	12.79
RBW4	15.44	15.67	15.70	19.21	0.90	0.96	1.28	1.91	3.83	7.66
RBW5	15.42	15.36	15.65	17.29	0.599	0.64	0.85	1.27	2.55	5.09
RBW6	15.40	15.34	15.62	17.18	0.45	0.48	0.64	0.95	1.90	3.81

Minimum signal duration (in µs) for 100% probability of FMT triggering with various signal to mask (StM) Note: Calculated with the length 1024 Blackman-Harris window

	Span									
N9032RTAB/ N9032RTEB	2 GHz	1.5 GHz	1 GHz	255 MHz	170 MHz	160 MHz	120 MHz	80 MHz	40 MHz	20 MHz
0 dB offset	16.25	16.42	17.24	23.91	5.13	5.452	7.27	10.90	21.81	43.62
6 dB offset	15.82	15.87	16.42	20.51	0.96	1.017	1.36	2.03	4.07	8.14
12 dB offset	15.74	15.77	16.27	19.85	0.46	0.49	0.65	0.97	1.94	3.89
20 dB offset	15.66	15.68	16.13	19.27	0.18	0.195	0.26	0.39	0.78	1.56
40 dB offset	15.55	15.53	15.91	18.37	0.02	0.03	0.03	0.05	0.10	0.20
60 dB offset	15.48	15.44	15.78	17.81	0.01	0.01	0.01	0.02	0.04	0.08
N9032RTBB/ N9032RTFB	2 GHz	1.5 GHz	1 GHz	255 MHz	170 MHz	160 MHz	120 MHz	80 MHz	40 MHz	20 MHz
0 dB offset	0.64	0.76	1.04	3.63	5.13	5.45	7.27	10.90	21.81	43.62
6 dB offset	0.22	0.22	0.23	0.68	0.96	1.02	1.36	2.03	4.07	8.14
12 dB offset	0.13	0.12	0.11	0.32	0.46	0.49	0.65	0.97	1.94	3.89
20 dB offset	0.07	0.05	0.05	0.13	0.18	0.195	0.26	0.39	0.78	1.56
40 dB offset	0.01	0.01	0.01	0.02	0.02	0.03	0.03	0.05	0.10	0.20
60 dB offset	0.001	0.001	0.002	0.007	0.009	0.01	0.01	0.02	0.04	0.08

General Specifications

Temperature range			
Operating			
Altitude ≤ 2,300 m	0 to 55 °C		
Altitude = 4,600 m	0 to 47 °C		
Derating	The maximum operating temperature derates linearly from altitude of 4,600 m to 2,300 m		
Storage	-40 to +70 °C		
Altitude	4,600 m (approx. 15,000 feet)		
Maximum relative humidity	95% up to 40°C, non-condensing. From 40 °C to 55 °C, the maximum % Relative Humidity follows the line of constant dew point.		
Environment			
Indoor use			
Power requirements			
Voltage and frequency (nominal)	100/120 V, 50/60/400 Hz The instruments can operate with mains supply voltage fluctuations 220/240 V, 50/60 Hz ± 10% of the nominal voltage		
Rated input power	630 W (maximum)		
Power consumption, on	560W (typical)		
Power Consumption, Standby	45 W		
Display			
Resolution	1280 x 768		
Size	269 mm (10.6 in.) diagonal (nominal) capacitive multi-touch screen		
Data storage			
Internal	Removable solid-state drive (≥ 256 GB)		
External	Supports USB 3.0/2.0 compatible memory devices		
CPU	Option PC8: Modular, upgradeable; Intel i7, 6-core, 1.9 GHz clock, 32 GB DDR4 DRAM; includes secure memory for instrument calibration data Option PCA: Modular; Intel i7, 6-core, 2.7 GHz clock, 32 GB DDR4 DRAM; includes secure memory for instrument calibration data.		
SSD (solid-state drive)	≥256 GB, removeable		
Operating system	Windows-10, Enterprise		
Weight			
Net	27 kg (59 lbs) (nominal)		
Shipping	39 kg (86 lbs) (nominal)		
Dimensions			
Height	177 mm (7.0 in)		
Width	426 mm (16.8 in)		
Length	556 mm (21.9 in)		
Calibration cycle			
The recommended collibration and is in			

The recommended calibration cycle is one year; calibration services are available through Keysight service centers.

Inputs and Outputs

Front panel

RF input			
Standard (Option 508, 513, 526)	Type-N female, 50 Ω nominal		
Standard (Option 544, 550)	2.4 mm male, 50 Ω nominal		
Standard (Option 555)	1.85mm male, 50 Ω nominal		
Option C35 (with Option 526 only)	3.5 mm male, 50 Ω nominal		
External mixing (Option EXM)			
Connector	SMA fomale 50.0 nominal		
Functions	SMA, female, 50 Ω, nominal Diplexer, LO output, IF input		
IF Input	Diplexer, LO output, if input		
Maximum safe level	+7 dBm		
	$F BW \leq 25 MHz$		322.5 MHz
Center frequency	40 MHz IF path		250 MHz
	255 MHz IF path		690 MHz
	1 GHz IF path	D (A)	690 MHz
Bandwidth	Supports all optional IFs up to and includin	ig R10	
ADC clipping level	25, 255, or 1 GHz IF paths		–15 dBm (nominal)
	40 MHz IF path		–20 dBm (nominal)
1 dB gain compression	–2 dB (nominal)		
Gain accuracy (The amplitude accuracy of	IF BW	Full range	20 to 30 °C
a measurement includes this term and the	IF BW \leq 25 MHz (swept and	±2.5 dB	±1.2 dB
accuracy with which the settings of	narrowband)		
corrections model the loss of the external mixer.)	Wider IF BW	±1.2 dB (nominal)	
	Center frequency	Width	RMS (nominal)
	322.5 MHz	±5 MHz	0.05 dB
E fraguanay raananaa	322.5 MHz	±12.5 MHz	0.07 dB
IF frequency response	250 MHz	±20 MHz	0.10 dB
	690 MHz	±127.5 MHz	0.12 dB
	690 MHz	±127.5 MHz	0.18 dB
Noise figure (322.5 MHz, swept operation high IF gain)	11 dB (nominal)		
VSWR	See Figure 4		
LO output			
•			
Frequency range	3.75 to 14.1 GHz		
	The LO output port power is compatible with Keysight M1970 and 11970 Series mixers except for the 11970K. The power is specified at the connector. Cable loss will affect the power available at the mixer. With non-Keysight/Agilent mixer units, supplied loss calibration data may be valid only at a specified LO power that may differ from the power available at the mixer. In such cases, additional uncertainties apply.		
Output power	Center frequency	Full range	20 to 30 °C
· · · · · · · · · · · · · · · · · · ·	3.75 to 8.72 GHz (LO Doubler = Off settings)	14 to 18.8 dBm	+15 to 18 dBm
	7.8 to 14.1 GHz (LO Doubler = On setting. Fundamental frequency = 3.9 to 7.05 GHz)	N/A	+14 to 18.5 dBm
Second Harmonic	-20 dB (nominal) (LO Doubler = Off settings)		
Fundamental feedthrough and undesired harmonics	-30 dB (nominal) (LO Doubler = On setting, Fundamental frequency = 3.9 to 7.05 GHz)		
VSWR (The reflection coefficient has a Rayleigh probability distribution from 3.75 GHz to 14.1 GHz with a median VSWR of 1.22:1.)	1.8:1 (nominal)	<u> </u>	

Internal calibrator output				
Cal out (Option 508, 513, 526)	SMA female, 10 MHz to 26.5 GHz internal calibrator output			
Cal out (Option 544, 550)	2.4 mm female, 10 MHz to 50 GHz internal calibrator output			
Cal out (Option 555)	1.85 mm female, 10 MHz to 55 GHz internal calibrator output			
Probe power				
	+15 Vdc, ± 7% at 150 mA max (nominal)			
Voltage/Current	-12.6 Vdc, ± 10% at 150 mA max (nominal)			
-	GND			
USB ports				
Туре	Description	Connector	Output current	
Standard (3)	Compatible with USB 2.0	USB Type-A female	0.5 A (nom) for ports not marked with lightning bolt 1.2 A (nom) for port marked with lightning bolt	
Headphone jack				
Connector	Miniature stereo audio jack			
Connector	3.5 mm			

Figure 4. External mixer IF input VSWR

Rear panel

Connector BNC female, 50 Ω (nominal) Output amplitude ≥ 0 dBm (nominal) Frequency 10 MHz × (1+ frequency reference accuracy) Ext ref in Ext ref in Connector BNC female, 50 Ω (nominal) Input amplitude range Sine wave: -5 to 10 dBm (nominal) Square wave: 0.2 to 1.5 V peak-to-peak (nominal) Input frequency 1 to 50 MHz (nominal) (selectable to 1 Hz resolution) Frequency lock range ±2 x 10-6 of specified external reference input frequency Trigger 1 and 2 inputs BNC female, 10 kΩ (nominal) (nominal) Connector BNC female, 10 kΩ (nominal) (selectable to 1 Hz resolution) Trigger 1 and 2 inputs -5 to +5 V Connector BNC female, 10 kΩ (nominal) (nominal) Trigger 3 input (precision, for wide-bandwidth measurements only)	
Output amplitude $\geq 0 \text{ dBm (nominal)}$ Frequency 10 MHz × (1+ frequency reference accuracy) Ext ref in Ext ref in Connector BNC female, 50 Ω (nominal) Input amplitude range Sine wave: -5 to 10 dBm (nominal) Square wave: 0.2 to 1.5 V peak-to-peak (nominal) Input frequency 1 to 50 MHz (nominal) (selectable to 1 Hz resolution) Frequency lock range $\pm 2 \times 10^{-6}$ of specified external reference input frequency Trigger 1 and 2 inputs BNC female, 10 kΩ (nominal) Connector BNC female, 10 kΩ (nominal) Trigger level range -5 to $+5$ V	
Frequency 10 MHz × (1+ frequency reference accuracy) Ext ref in Connector BNC female, 50 Ω (nominal) Input amplitude range Sine wave: -5 to 10 dBm (nominal) Square wave: 0.2 to 1.5 V peak-to-peak (nominal) Input frequency 1 to 50 MHz (nominal) Kelectable to 1 Hz resolution) Frequency lock range ±2 x 10-6 of specified external reference input frequency Trigger 1 and 2 inputs Connector BNC female, 10 kΩ (nominal) Trigger level range -5 to +5 V	
Ext ref in Connector BNC female, 50 Ω (nominal) Input amplitude range Sine wave: -5 to 10 dBm (nominal) Square wave: 0.2 to 1.5 V peak-to-peak (nominal) Input frequency 1 to 50 MHz (nominal) (selectable to 1 Hz resolution) Frequency lock range ±2 x 10-6 of specified external reference input frequency Trigger 1 and 2 inputs Connector BNC female, 10 kΩ (nominal) Trigger level range -5 to +5 V	
Connector BNC female, 50 Ω (nominal) Input amplitude range Sine wave: -5 to 10 dBm (nominal) Square wave: 0.2 to 1.5 V peak-to-peak (nominal) Input frequency 1 to 50 MHz (nominal) (selectable to 1 Hz resolution) Frequency lock range ±2 x 10-6 of specified external reference input frequency Trigger 1 and 2 inputs BNC female, 10 kΩ (nominal) Connector BNC female, 10 kΩ (nominal) Trigger level range -5 to +5 V	
Input amplitude range Sine wave: -5 to 10 dBm (nominal) Square wave: 0.2 to 1.5 V peak-to-peak (nominal) Input frequency 1 to 50 MHz (nominal) (selectable to 1 Hz resolution) Frequency lock range ±2 x 10-e of specified external reference input frequency Trigger 1 and 2 inputs ENC female, 10 kΩ (nominal) Connector BNC female, 10 kΩ (nominal) Trigger level range -5 to +5 V	
Input amplitude range Square wave: 0.2 to 1.5 V peak-to-peak (nominal) Input frequency 1 to 50 MHz (nominal) (selectable to 1 Hz resolution) Frequency lock range ±2 x 10-e of specified external reference input frequency Trigger 1 and 2 inputs ENC female, 10 kΩ (nominal) Connector BNC female, 10 kΩ (nominal) Trigger level range -5 to +5 V	
Input requency (selectable to 1 Hz resolution) Frequency lock range ±2 x 10-6 of specified external reference input frequency Trigger 1 and 2 inputs ENC female, 10 kΩ (nominal) Trigger level range -5 to +5 V	
Trigger 1 and 2 inputs Connector BNC female,10 kΩ (nominal) Trigger level range -5 to +5 V	
Connector BNC female, 10 kΩ (nominal) Trigger level range -5 to +5 V	
Trigger level range -5 to +5 V	
Trigger level range -5 to +5 V	
bb b b b b b b b b 	
Connector SMA, female, 50 Ω (nominal)	
Trigger level range -4.5 to 4.5 V	
Trigger 1 and 2 outputs	
Connector BNC female, 50 Ω (nominal)	
Trigger level range 0 to 5 V (CMOS) (nominal)	
VGA (monitor output 1)	
Connector VGA compatible, 15-pin mini D-SUB Format XGA (60 Hz vertical sync rates, non-interlaced) analog RGB	
Resolution 1280 x 768 (Default)	
DisplayPort (monitor output 2)	
Connector Option PC8: Mini display port Option PCA: DisplayPort 1.2	
Resolution 1280 x 768 (Default)	
Noise source drive +28 V (pulsed)	
Connector BNC female	
Output Voltage On 28.0 ± 0.1 V	
Output Voltage Off <1.0 V	
SNS Series Noise Source For use with Keysight Technologies SNS series noise sources	
Connector 12 pin circular	
Analog out	
Connector BNC female, 50 Ω (nominal)	
USB ports	
USB 3.0 (Option PC8 CPU, host, superspeed; 2 ports)	
Standard Compatible with USB 3.0	
Connector USB Type-A female	
Output current 0.9 A (nominal)	
USB 2.0 (Option PC8 CPU, 1 port)	
Standard Compatible with USB 2.0	
Connector USB Type-A female	
Output current 0.5 A (nominal)	
USB 3.1 (Option PCA CPU, 4 ports)	
Standard Compatible with USB 3.0	
Connector USB Type-A female	
Connector USB Type-A female Output current 0.9 A (nominal)	
Connector USB Type-A female Output current 0.9 A (nominal) USB 3.0 (Option PC8 and PCA CPUs; device; 1 port) The second s	
Connector USB Type-A female Output current 0.9 A (nominal) USB 3.0 (Option PC8 and PCA CPUs; device; 1 port) Standard Compatible with USB 3.0	
Connector USB Type-A female Output current 0.9 A (nominal) USB 3.0 (Option PC8 and PCA CPUs; device; 1 port) The second s	

Connector		IEEE-488 bus connector			
GPIB codes		SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3, C28, DT1, L4, C0			
GPIB mode		Controller or device			
Thunderbolt (Option PC	A CPU)				
Connector		USB Type C, female (2 ports)			
Output power		5 V, 1.0 A (max.)			
PCle X4 interface					
Connector PCIe X4, female					
Digital bus interface					
Connector		MDR-80 This port is intended for use with the Agilent/Keysight N5105 and N5106 products only. It is not available for general purpose use.			
LAN TCP/IP interface		h h			
		Option PC8, PCA: 1000Base	-T		
Standard		Option PCA: 10GBase-T			
Connector		RJ45 Ethertwist			
Optical Data Interface (C)DI)				
ODI physical interface c					
Specification		ODI-1: Physical Layer Speci	fication Revision 3.0		
Number of ODI ports					
Connector		MPO style, 2 rows of 12 fibe	positions		
Lane rate		12.5 Gbit/s	•		
Interlaken burst max		2048 byte			
Flow control					
Port directionality		Producer only			
Port aggregation		Not applicable			
Interlaken channels		1 channel (Ch 0)			
Streaming data rate		Up to 9.6 GByte/s			
ODI data format capabili	ity				
Specification	ODI-2: Transport Layer, Revision 3.0, ODI-2.1: High Speed Data Formats, Revision 3.0				
Packet types supported Data packets Context packets					
Context packets		Signal context packets supported: Data includes bandwidth, IF frequency, RF frequency, reference level, sample rate, overrange count			
Control packets		Not used			
Timestamp support		Supported, time of day Typical accuracy: System clock ± 20us			
Trailer bit support		Overrange Spectral inversion Incomplete packet			
Data format class IDs sup	ported	See table below			
Signal data packet size		Data size 65,536 bytes 16,384 16-bit IQ samples per packet 8,192 32-bit IQ samples per packet			
Supported data format a	ind class ID table				
Item packing field width	Data item (signed)	Real or IQ	Data type identifier	Notes	
32-bit	16-bit	IQ	0x18	16-bit I&Q for bandwidths > 255.176 MHz	
64-bit	32-bit	IQ	0x20	32-bit I&Q for bandwidths ≤ 255.176MHz	
Wide IF out (enabled by	option CRW)				
Connector		SMA, female, 50 Ω nominal			
AUX IF output					
Connector		SMA female, shared by CR3	, CRP and ALV		
Impedance		50 Ω nominal			
AUX IF output, second I	F output (option CR3)				
SA mode		322.5 MHz center frequency			
IQ analyzer with IF bandw	ridth ≤ 25 MHz	322.5 MHz center frequency			
IQ analyzer with IF path 4		250 MHz center frequency			
IQ analyzer with IF path 2		690 MHz center frequency			
IQ analyzer with IF path 1.5 GHz		950 MHz (band 0), 1200 MHz (band 1 to 4)			

IQ analyzer with IF path 2 GHz	1200 MHz center frequency		
Conversion gain (SA mode and up to 40 MHz bandwidth)	-1 to +4 dB (nominal) plus RF frequency response		
Bandwidth (-6 dB)			
< 3.6 GHz	Up to 1 GHz (nominal)		
> 3.6 GHz, with preselector	Depends on RF center frequency		
> 3.6 GHz, with preselector bypass	100-800 MHz ±3 dB (nominal)		
AUX IF output, programmable (Option CRI	P) (only available in swept spectrum analysis or IF path \leq 40 MHz	2)	
Bandwidth			
Highpass corner frequency	5 MHz (nominal) at −3 dB		
Lowpass corner frequency	120 MHz (nominal) at -3 dB		
Output at 70 MHz			
< 3.6 GHz or > 3.6 GHz with preselector			
bypassed	100 MHz nominal		
Preselected band	Depends on RF center frequency		
IF output center frequency	Depends on the center inequency		
Range	10 to 75 MHz (user selectable)		
Resolution	0.5 MHz		
Conversion gain Lower output frequencies	-1 to +4 dB (nominal) plus RF frequency response		
Residual output signals	Subject to folding ≤ −88 dBm (nominal)		
AUX IF output, Fast Log Video (Option AL	v)		
General Port Specifications			
Connector	SMA female		Shared with other options
Impedance	50 Ω nominal		
Fast Log Video Output			
Output voltage	Open-circuit voltages		
Maximum	1.6 V at –10 dBm nominal		
Slope	$25 \pm 1 \text{ mV/dB nominal}$		
Rise Time	15 ns nominal		
Fall Time	40 ns nominal		
Y-axis video output (Option YAV)			
General port specifications	DNO (constr	01-	
Connector	BNC female	Sna	red with other options
Impedance	50 Ω nominal		
Screen video			
Display scale types	Log or Lin	"Lin	" is linear in voltage
Log scales	All (0.1 to 20 dB/div)		
Modes	Spectrum analyzer only		
Gating	Gating must be off		
Output scaling	0 to 1.0 V open circuit, representing bottom to top of screen		
Offset	± 1% of full scale (nominal)		
Gain accuracy	± 1% of output voltage (nominal)		
Log Video (log envelope) Output Amplitude Range (terminated with 50 Ω)			
Maximum	1.0 V (nominal) for –10 dBm at the mixer		
Scale factor	Output changes 1 V per 192.66 dB change in the signal envelop	be	
Bandwidth	Set by RBW		
Operating conditions	Select Sweep Type = Swept		
Linear Video (AM demod) Output			
Amplitude Range (terminated with 50 Ω)			
Maximum	1.0 V (nominal) for signal envelope at the reference level		
Minimum			
Scale factor	If carrier level is set to half the reference level in volts, the scale factor is 200% of carrier level per volt. Regardless		
	of the carrier level, the scale factor is 100% of reference level pe	or voit.	
Bandwidth	Set by RBW		

Regulatory Information

This product is designed for use in INSTALLATION CATEGORY II and POLLUTION DEGREE 2 and MEASUREMENT CATEGORY NONE per IEC 61010-1, and 664 respectively.

This product has been designed and tested in accordance with accepted industry standards and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.

This product is intended for indoor use.

CE	The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven). This product complies with all relevant directives.
ccr.keysight@keysight.com	The Keysight email address is required by EU directives applicable to our product.
CAN ICES/NMB-001(A)	"This ISM device complies with Canadian ICES-001." "Cet appareil ISM est conforme a la norme NMB du Canada."
ISM 1-A (GRP.1 CLASS A)	This is a symbol of an Industrial Scientific and Medical Group 1 Class A product. (CISPR 11, Clause 4)
e SP us	The CSA mark is a registered trademark of the CSA International.
$\textcircled{\begin{time}{0.5ex}}{0.5ex}$	The RCM mark is a registered trademark of the Australian Communications and Media Authority.
UK CA	UK conformity mark is a UK government owned mark. When affixed to the product is declaring all applicable Directives and Regulations have been met in full.
X	This symbol indicates separate collection for electrical and electronic equipment mandated under EU law as of August 13, 2005. All electric and electronic equipment are required to be separated from normal waste for disposa (Reference WEEE Directive 2002/96/EC).
40	China RoHS regulations include requirements related to packaging and require compliance to China standard GB18455-2001.
0	This symbol indicates compliance with the China RoHS regulations for paper/fiberboard packaging.
¢́≊́γ	More than one person is required to safely lift or carry this instrument. Alternately a mechanical lift can be used to eliminate the risk of personal injury.
	South Korean Certification (KC) mark; includes the marking's identifier code: R-R-Kst-xxxxxx
*	This symbol indicates the presence of a class 1 Laser device.

Safety and Regulatory Markings Which May Be on the Product

Regulatory, Environmental and Certifications

EMC	Complies with the essential requirements of the European EMC Directive and the UK Electromagnetic Compatibility Regulations 2016 as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity): IEC/EN 61326-1 CISPR 11 Group 1, Class A AS/NZS CISPR 11 ICES/NMB-001 UKCA This ISM device complies with Canadian ICES-001 Cet appareil ISM est conforme a la norme NMB-001 du Canada NOTE: This is a sensitive measurement apparatus by design and may have some performance loss (up to 40 dB in the range 80 MHz to 6 GHz; above the Spurious Responses, Residual Responses specification of –100 dBm) when in the presence of ambient electromagnetic field of 3V/m.		
	This equipment has been conformity assessed for use in business environments. In a residential environment this equipment may cause radio interference. This EMC statement applies to the equipment only for use in business environment.		
	사용자안내문		
South Korean Class A EMC declaration	이 기기는 업무용 환경에서 사용할 목적으로 적합성평가를 받은 기기로서 가정용 환경에서 사용하는 경우 전파간섭의 우려가 있습니다.		
	※ 사용자 안내문은 "업무용 방송통신기자재"에만 적용한다.		
Safety	Complies with the essential requirements of the European Low Voltage Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity): IEC/EN 61010-1 Canada: CSA C22.2 No. 61010-1 USA: UL std no. 61010-1 WARNING "WARNING: EMBEDDED CLASS 1 INVISIBLE LASER RADIATION. DO NOT EXPOSE USERS OR VIEW DIRECTLY WITH TELESCOPES"		
Acoustic statement (European Machinery Directive)	Acoustic noise emission LpA < 70 dB Operator position Normal operation mode per ISO 7779		
	Acoustic noise - more information (Values given are per ISO 7779 standard in the "Operator Sitting" position)		
	Ambient temperature (< 40 °C) Nominally under 55 dBA Sound Pressure. 55 dBA is generally considered suitable for use in quiet office environment Ambient temperature (≥ 40 °C) Nominally under 65 dBA Sound Pressure. 65 dBA is generally considered suitable for use in noisy office environment		
Environmental stress	Samples of this product have been type tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include, but are not limited to, temperature, humidity, shock, vibration, altitude, and power line conditions; test methods are aligned with IEC 60068-2 and levels are similar to MILPRF-28800F Class 3.		

To find a current **Declaration of Conformity** for a specific Keysight product, go to:

http://www.keysight.com/go/conformity

Additional Resources

The N9032B PXA X-Series signal analyzer isn't the only thing that will bring you to RF breakthroughs. Powerful software drives your measurements while finely tuned hardware takes them to new heights. In order to move the measurement plane to your device under test, reach even higher levels of measurement accuracy, and achieve 2 GHz of signal analysis and generation, the N9032B PXA partners with the:

- PathWave X-Series measurement applications and PathWave Vector Signal Analysis (VSA)
- U9361 RCal receiver calibrator for improved receiver test system accuracy by 10X
- M9484C VXG signal generator for wideband stimulus and response testing

N9032B PXA Signal Analyzer Configuration Guide (3121-1216.EN)

www.keysight.com/find/N9032B

Confidently Covered by Keysight Services

Prevent delays caused by technical questions and reduce system downtime due to instrument maintenance and repairs with Keysight Services. Keysight Services are here to support your test needs with expert technical support, instrument repair and calibration, software support, training, alternative acquisition program options, and more.

A KeysightCare agreement provides dedicated, proactive support through a single point of contact for instruments, software, and solutions. KeysightCare covers an extensive group of instruments, application software, and solutions and ensures optimal uptime, faster response, faster access to experts, and faster resolution.

Keysight Services

Offering	Benefits
KeysightCare	KeysightCare provides elevated support for Keysight instruments and software, with access to technical support experts that respond within a specified time and ensure committed repair and calibration turnaround times (TAT). KeysightCare offers multiple service agreement tiers, including KeysightCare Assured, Enhanced, and Application Software Support. See the KeysightCare data sheet for details.
KeysightCare Assured	KeysightCare Assured goes beyond basic warranty with repair services that include committed TAT and unlimited access to technical experts.
KeysightCare Enhanced	KeysightCare Enhanced includes all the benefits of KeysightCare Assured plus Keysight's accurate and reliable Calibration Services, accelerated, and committed TAT, and technical response.
Keysight Support Portal & Knowledge Center	All KeysightCare tiers include access to the Keysight Support Portal where you can manage support and service resources related to your assets such as service requests, and status, or browse the Knowledge Center.
Education Services	Build confidence and gain new skills to make accurate measurements, with flexible Education Services developed by Keysight experts. Including Start-up Assistance.
Alternative acquisition of	ptions
KeysightAccess	Reduce budget challenges with a leased-based subscription service, that offers low monthly payments, enabling you to get the instruments, software, and technical support you want for your test needs.

Recommended services

Maximize your test system up-time by securing technical support, repair, and calibration services with committed response and turnaround times. 1-year KeysightCare Assured is included in every new instrument purchase. Obtain multi-year KeysightCare upfront to eliminate the need for lengthy and tedious paperwork and yearly requests for maintenance budget. Plus, you benefit from secured service for 2, 3, or 5 years.

Service	Function		
KeysightCare Enhanced*	Includes tech support, warranty and calibration		
R-55B-001-1	KeysightCare Enhanced – Upgrade 1 year		
R-55B-001-2	KeysightCare Enhanced – Extend to 2 years		
R-55B-001-3	KeysightCare Enhanced – Extend to 3 years (Recommended)		
R-55B-001-5	KeysightCare Enhanced – Extend to 5 years (Recommended)		
KeysightCare Assured	Includes tech support and warranty		
R-55A-001-2	KeysightCare Assured – Extend to 2 years		
R-55A-001-3	KeysightCare Assured – Extend to 3 years		
R-55A-001-5	KeysightCare Assured – Extend to 5 years		
Start-Up Assistance			
PS-S40-01	Included – instrument fundamentals and operations starter		
PS-S40-04	Recommended – instrument fundamentals and operations starter		
PS-S40-02	Optional, technology & measurement science standard learning		

* Available in select countries. For details, please view the datasheet. R-55B-001-2/3/5 must be ordered with R-55B-001-1.

Keysight enables innovators to push the boundaries of engineering by quickly solving design, emulation, and test challenges to create the best product experiences. Start your innovation journey at www.keysight.com

This information is subject to change without notice.© Keysight Technologies, 2021 - 2023, Published in USA, December 26, 2023, 3121-1222.EN